diff --git a/fitting.py b/fitting.py index 9f567c58b2b4688ee602d05a75eb498322329b1c..6406cabbf82b504168b887769767a520926efb03 100644 --- a/fitting.py +++ b/fitting.py @@ -5,11 +5,31 @@ import numpy as np # Fitting def fit_linear(S, V, **kwargs): + """Fit a linear function to the data + + :param S: data x values + :param V: data y values + :param xerr: data x uncertainties + :param yerr: data y uncertainties + :param p0: initial values of parameters + :param odr: Fit method to use: True means ortogonal distance regression (ODR), False means ordinary least square fit, None (default) uses ODR only if either xerr or yerr is not None + :param extend: fraction by which the returned fit trace extends beyond the first/last data point + """ result = fit_function(lambda s, v0, m: v0+m*s, S, V, p0=(np.mean(V), np.mean(np.diff(V)/np.diff(S))), **kwargs) param, param_error, function, [X, _] = result return param, param_error, function, [X, function(X, *param)] def fit_gaussian(S, V, **kwargs): + """Fit a gaussian function to the data + + :param S: data x values + :param V: data y values + :param xerr: data x uncertainties + :param yerr: data y uncertainties + :param p0: initial values of parameters + :param odr: Fit method to use: True means ortogonal distance regression (ODR), False means ordinary least square fit, None (default) uses ODR only if either xerr or yerr is not None + :param extend: fraction by which the returned fit trace extends beyond the first/last data point + """ gauss = lambda s, v0, vp, s0, sigma: v0+vp*np.exp(-0.5*((s-s0)/sigma)**2) v0 = np.min(V) vp = np.max(V)-v0 @@ -20,7 +40,17 @@ def fit_gaussian(S, V, **kwargs): param[3] = np.abs(param[3]) # return the positive sigma (could use bounds instead, but that's more likely to fail) return param, param_error, function, [X, function(X, *param)] -def fit_lorenzian(S, V, log=False, **kwargs): +def fit_lorenzian(S, V, **kwargs): + """Fit a lorenzian function to the data + + :param S: data x values + :param V: data y values + :param xerr: data x uncertainties + :param yerr: data y uncertainties + :param p0: initial values of parameters + :param odr: Fit method to use: True means ortogonal distance regression (ODR), False means ordinary least square fit, None (default) uses ODR only if either xerr or yerr is not None + :param extend: fraction by which the returned fit trace extends beyond the first/last data point + """ lorenzian = lambda s, v0, vp, s0, gamma: v0 + vp/(1+((s-s0)/gamma)**2) v0 = np.min(V) vp = np.max(V)-v0 @@ -32,9 +62,17 @@ def fit_lorenzian(S, V, log=False, **kwargs): return param, param_error, function, [X, function(X, *param)] -def fit_function(function, x, y, *, xerr=None, yerr=None, p0=None, odr=None, extend=0, **kwargs): - """ - :param log: if the y-data is log-scaled +def fit_function(function, x, y, *, xerr=None, yerr=None, p0=None, odr=None, extend=0): + """Fit a function to the data + + :param function: fit function(x, *param) + :param x: data x values + :param y: data y values + :param xerr: data x uncertainties + :param yerr: data y uncertainties + :param p0: initial values of parameters + :param odr: Fit method to use: True means ortogonal distance regression (ODR), False means ordinary least square fit, None (default) uses ODR only if either xerr or yerr is not None + :param extend: fraction by which the returned fit trace extends beyond the first/last data point """ if odr is None: odr = xerr is not None or yerr is not None @@ -49,7 +87,7 @@ def fit_function(function, x, y, *, xerr=None, yerr=None, p0=None, odr=None, ext param, param_error = output.beta, output.sd_beta else: # non-linear least squares - param, cov = scipy.optimize.curve_fit(function, x, y, p0, **kwargs) + param, cov = scipy.optimize.curve_fit(function, x, y, p0) param_error = np.sqrt(np.abs(cov.diagonal())) mi, ma = min(x), max(x) @@ -57,6 +95,16 @@ def fit_function(function, x, y, *, xerr=None, yerr=None, p0=None, odr=None, ext return param, param_error, function, [X, function(X, *param)] def fit_exponential(S, V, **kwargs): + """Fit an exponential function to the data + + :param S: data x values + :param V: data y values + :param xerr: data x uncertainties + :param yerr: data y uncertainties + :param p0: initial values of parameters + :param odr: Fit method to use: True means ortogonal distance regression (ODR), False means ordinary least square fit, None (default) uses ODR only if either xerr or yerr is not None + :param extend: fraction by which the returned fit trace extends beyond the first/last data point + """ exponential = lambda s, v0, vp, s0: v0 + vp*np.exp(s/s0) v0 = np.min(V) vp = np.max(V)-v0