import scipy import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import pint from .data import * from .fitting import * # Setup pint SI = pint.UnitRegistry() SI.setup_matplotlib() SI.default_format = '~P' # Colors # https://arxiv.org/abs/2107.02270 petroff_colors = ["#3f90da", "#ffa90e", "#bd1f01", "#94a4a2", "#832db6", "#a96b59", "#e76300", "#b9ac70", "#717581", "#92dadd"] cmap_petroff_10 = mpl.colors.ListedColormap(petroff_colors, 'Petroff 10') mpl.rcParams['axes.prop_cycle'] = mpl.cycler(color=petroff_colors) cmap_petroff_gradient = mpl.colors.LinearSegmentedColormap.from_list('Petroff gradient', [petroff_colors[i] for i in (9,0,4,2,6,1)]) cmap_petroff_gradient.set_under(petroff_colors[3]) cmap_petroff_gradient.set_over(petroff_colors[7]) mpl.rcParams['image.cmap'] = cmap_petroff_gradient cmap_petroff_bipolar = mpl.colors.LinearSegmentedColormap.from_list('Petroff bipolar', [petroff_colors[i] for i in (2,6,1,3,9,0,4)]) cmap_petroff_bipolar.set_under(petroff_colors[5]) cmap_petroff_bipolar.set_over(petroff_colors[8]) def add_vline(axes, r, color='k', text=None, label=None, order=None, lw=1, text_top=True, text_vertical=True, zorder=-100, **kwargs): for i, a in enumerate(axes): if a is None: continue if order: kwargs['ls'] = (0, [11,2]+[1,2]*order) kwargs['alpha'] = 1/order a.axvline(r, c=color, label=label if a.get_xlim()[0] <= r <= a.get_xlim()[1] else None, zorder=5, lw=lw, **kwargs) if text: a.text(r, .99 if text_top else 0.01, f' {text} ', fontsize='small', c=color, zorder=zorder, alpha=1/order if order else 1, transform=a.get_xaxis_text1_transform(0)[0], rotation=90 if text_vertical else 0, clip_on=True, ha='right' if text_vertical else 'left', va='top' if text_top else 'bottom') def to_half_intervall(q): """Returns the corresponding fractional tune value in the half interval [0;0.5) """ q = q-np.floor(q) q = np.where(q < 0, q+1, q) return np.min([q, 1-q], axis=0) def add_resonance_vlines(axes, max_order, color='r'): res = set() for m in range(1, max_order+1): for n in range(m//2+1): r = n/m if r in res: continue res.add(r) add_vline(axes, to_half_intervall(r), color, text=f'{n}/{m} resonance' if m > 1 else None, lw=3/max(1, m-2)**.5, alpha=1/max(1, m-2), text_vertical=True, text_top=True) def subplot_shared_labels(axes, xlabel=None, ylabel=None, clear=True): """Adds labels to shared axes as needed :param axes: 2D array of axes from subplots (pass squeeze=False to plt.subplots if required) :param xlabel: the shared xlabel :param ylabel: the shared ylabel :param clear: if true (default) any existing labels on the axes will get cleared """ for r in range(axes.shape[0]): for c in range(axes.shape[1]): if ylabel: if clear: axes[r,c].set(ylabel=None) if c == 0 or not axes[r,c].get_shared_y_axes().joined(axes[r,c], axes[r,0]): axes[r,c].set(ylabel=ylabel) if xlabel: if clear: axes[r,c].set(xlabel=None) if r == axes.shape[0]-1 or not axes[r,c].get_shared_x_axes().joined(axes[r,c], axes[-1,c]): axes[r,c].set(xlabel=xlabel) def grid_diagonal(ax, **kwargs): for k, v in dict(color='lightgray',lw=1,zorder=-100).items(): kwargs.setdefault(k, v) xlim, ylim = ax.get_xlim(), ax.get_ylim() xtick, ytick = ax.get_xticks(), ax.get_yticks() for x in xtick: if xlim[0] <= x <= xlim[1]: ax.axline((x, ylim[0]), slope=1, **kwargs) for y in ytick: if ylim[0] <= y <= ylim[1]: ax.axline((xlim[0], y), slope=1, **kwargs) ax.set(xlim=xlim, ylim=ylim) def fiberplot(ax, datasets, *, labels=[None, None], vertical=True): """Create a :param datasets: 2D array of datasets (position, x, y) or dict with two levels """ if type(datasets) is dict: labels = list(datasets.keys()) datasets = [[(p, *v) for p, v in dataset.items()] for dataset in datasets.values()] yticks = list({p for dataset in datasets for p, *_ in dataset}) dy = np.min(np.diff(sorted(yticks)))/2 for c, dataset in enumerate(datasets): color = next(ax._get_lines.prop_cycler)['color'] for i, (p, x, y, *_) in enumerate(dataset): v = dy*(y-np.min(y))/np.max(y) plot_function = ax.fill_betweenx if vertical else ax.fill_between plot_function(x, p - v*(1-c%2), p + v*(c%2 if len(datasets)>1 else 1), color=color, lw=0, label=labels[c] if i == 0 else None) if vertical: ax.set(xticks=yticks) else: ax.set(yticks=yticks) def format_axis_radians(yaxis): yaxis.set_major_locator(mpl.ticker.MultipleLocator(np.deg2rad(360))) yaxis.set_minor_locator(mpl.ticker.MultipleLocator(np.deg2rad(180))) yaxis.set_major_formatter(mpl.ticker.FuncFormatter(lambda x, p: '0' if x==0 else '$\\pi$' if x==np.pi else '$-\\pi$' if x==-np.pi else f'${x/np.pi:g}\\pi$')) yaxis.set_minor_formatter(mpl.ticker.FuncFormatter(lambda x, p: '0' if x==0 else '$\\pi$' if x==np.pi else '$-\\pi$' if x==-np.pi else None)) def format_axis_degrees(yaxis): yaxis.set_major_locator(mpl.ticker.MaxNLocator('auto', steps=[1, 1.5, 3, 6, 9, 10])) yaxis.set_minor_locator(mpl.ticker.MultipleLocator(30)) def add_scale(ax, scale, text=None, *, size=0.01, padding=0.1, loc='lower right', color='k', fontsize='x-small'): """Make a scale or yardstick patch""" aux = mpl.offsetbox.AuxTransformBox(mpl.transforms.blended_transform_factory(ax.transData, ax.transAxes)) aux.add_artist(plt.Rectangle((0,0), scale, size, fc=color)) if text: aux.add_artist(plt.Text(0, size, text, color=color, va='bottom', fontsize=fontsize)) ab = mpl.offsetbox.AnchoredOffsetbox(loc, borderpad=padding, zorder=100, frameon=False) ab.set_child(aux) ax.add_artist(ab) # Libera tbt data ################## def turn_or_time_range(time, turn_range=None, time_range=None): if turn_range is not None and time_range is not None: raise ValueError('Parameters turn_range or time_range are mutually exclusive') if time_range is not None: return irng(time, *time_range) if turn_range is None: return slice(None, None) return slice(*turn_range) def plot_tbt(ax, libera_data, what='fsxy', *, over_time=True, turn_range=None, time_range=None): """Plot turn-by-turn data :param what: list of signals to plot: f, s, x, y """ assert isinstance(libera_data, LiberaTBTData), f'Expected LiberaTBTData but got {type(libera_data)}' axlabels = dict(f='$f_\\mathrm{rev}$ / MHz', s='Pickup sum / a.u.', x='Position / mm', y='Position / mm') turn_range = turn_or_time_range(libera_data.t, turn_range, time_range) t = libera_data.t[turn_range] x = t if over_time else np.arange(0, len(t)) axes = {} ls, labels = [], [] for i, w in enumerate(what): if axlabels[w] in axes: a = axes[axlabels[w]] else: a = ax.twinx() if i > 0 else ax if i > 0: a.spines.right.set_position(("axes", 0.9+0.1*len(axes))) a.set(ylabel=axlabels[w]) axes.update({axlabels[w]: a}) if w == 'f': v = 1e-6/np.diff(t) else: v = getattr(libera_data, w)[turn_range] l, = a.plot(*avg(x[:len(v)], v, n=500), c=dict(f=cmap_petroff_10(1), s=cmap_petroff_10(3), x=cmap_petroff_10(0), y=cmap_petroff_10(2))[w]) ls.append(l) labels.append(dict(f='Revolution frequency', s='Pickup sum signal', x='X position', y='Y position')[w]) if len(what) > 1: a.legend(ls, labels, fontsize='small') def plot_btf(axf, axp, data, *, frev=None, **kwargs): f = data.f*(1/frev if frev else 1) axf.plot(f, data.m, **kwargs) axp.plot(f, data.p, **kwargs) axf.set(ylabel=f'Magnitude / {data.m_unit}', xlim=(np.min(f), np.max(f))) axp.set(ylabel=f'Phase / {data.p_unit}', xlabel='Stimulus tune' if frev else f'Stimulus frequency / {data.f_unit}') def plot_tune_spectrum(ax, libera_data, xy, turn_range=None, time_range=None, tune_range=None, fit=False, smoothing=None, return_spectrum=False, **kwargs): """Plot a tune spectrum based on turn-by-turn data :param ax: Axis to plot onto :param libera_data: Instance of LiberaTBTData class :param xy: either 'x' or 'y' :param turn_range: tuple of (start_turn, stop_turn) for range to plot :param turn_range: tuple of (start_time, stop_time) in seconds for range to plot """ assert isinstance(libera_data, LiberaTBTData), f'Expected LiberaTBTData but got {type(libera_data)}' turn_range = turn_or_time_range(libera_data.t, turn_range, time_range) tbt_data = getattr(libera_data, xy)[turn_range] fft = np.fft.rfft(tbt_data) freq, mag, phase = np.fft.rfftfreq(len(tbt_data), d=1), np.abs(fft), np.angle(fft) if tune_range is not None: mask = irng(freq, *tune_range) freq, mag, phase = freq[mask], mag[mask], phase[mask] else: tune_range = (0, 0.5) if smoothing is not None: ls, = ax.plot(freq, mag, **dict(kwargs, zorder=-100, alpha=0.1)) if 'c' not in kwargs and 'color' not in kwargs: kwargs.update(c=ls.get_color()) add_scale(ax, smoothing*np.mean(np.diff(freq))) #freq, mag, phase = avg(freq, mag, phase, n=smoothing) freq, mag, phase = [scipy.signal.savgol_filter(_, smoothing, 0) for _ in (freq, mag, phase)] # savgol filter with order 0 is moving average ax.plot(freq, mag, **kwargs) ax.set(xlim=tune_range, xlabel=f'Tune $q_{xy}$', ylabel='a.u.') if fit: q = None try: if fit is True: fit = fit_lorenzian fitr = fit(freq, mag) if fit in (fit_lorenzian, fit_gaussian): q, w = fitr[0][2], fitr[0][3] if q<np.min(freq) or q>np.max(freq) or w > 0.1: raise RuntimeError('Fit failed') q = SI.Measurement(fitr[0][2], (fitr[1][2]**2+fitr[0][3]**2+fitr[1][3]**2)**0.5, '') # conservative estimate of error including width of peak ax.plot(*fitr[-1], '--', label=f'Fit $q_{xy}={q:~L}$', zorder=50) elif fit in (fit_double_lorenzian, ): q1, w1, q2, w2 = fitr[0][2], fitr[0][3], fitr[0][5], fitr[0][6] if q1<np.min(freq) or q1>np.max(freq) or w1 > 0.1 or q2<np.min(freq) or q2>np.max(freq) or w2 > 0.1: raise RuntimeError('Fit failed') q1 = SI.Measurement(fitr[0][2], (fitr[1][2]**2+fitr[0][3]**2+fitr[1][3]**2)**0.5, '') # conservative estimate of error including width of peak q2 = SI.Measurement(fitr[0][5], (fitr[1][5]**2+fitr[0][6]**2+fitr[1][6]**2)**0.5, '') # conservative estimate of error including width of peak ax.plot(*fitr[-1], '--', label=f'Fit $q_{{{xy},1}}={q1:~L}$\nFit $q_{{{xy},2}}={q2:~L}$', zorder=50) q = (q1, q2) except RuntimeError: print('Warning: fit failed') if return_spectrum: return freq, mag, phase, q return q if return_spectrum: return freq, mag, phase def plot_tune_spectrogram(ax, libera_data, xy, *, nperseg=2**12, noverlap=None, ninterpol=None, over_time=True, colorbar=False, turn_range=None, time_range=None, tune_range=None, excitation=None, vmin=None, vmax=None, cmap='gist_heat_r', bunches=None, show_nperseg=True): """Plot a tune spectrogram based on turn-by-turn data :param ax: Axis to plot onto :param libera_data: Instance of LiberaTBTData or LiberaBBBData When passing LiberaTBTData, the spectrogram for the single bunch is returned When passing LiberaBBBData, the resulting spectrogram will be an interleave of the single bunch spectra Hint: Use LiberaBBBData.to_tbt_data(h, b) to extract single bunch data :param bunches: bunch number in case libera_data is an instance of LiberaBBBData :param xy: either 'x' or 'y' :param over_time: plot data as function of time (if true) or turn number (otherwise). Note that plotting over time is not suited for interactive plots. :param turn_range: tuple of (start_turn, stop_turn) for range to plot :param time_range: tuple of (start_time, stop_time) in seconds for range to plot :param tune_range: tuple of (start_tune, stop_tune) ror range to plot :param excitation: tuple of (type, tune, ...) to indicate excitation range. Supported types are: Excitation frequency band: ('band', tune, bandwidth_in_Hz) Sinusoidal excitation: ('sine', tune) Chirp excitation: ('chirp', tune, bandwidth_in_Hz, chirp_frequency_in_Hz, chirp_phase_in_rad) :param vmin: minimum value for colorscale :param vmax: maximum value for colorscale :param colorbar: add colorbar to plot """ if bunches is None: # STFT on turn by turn data assert isinstance(libera_data, LiberaTBTData), f'Either pass number of bunches or single bunch LiberaTBTData (but got {type(libera_data)}).' if ninterpol is None: ninterpol = 4 else: # interleaved STFT on bunch-by-bunch data assert isinstance(libera_data, LiberaBBBData), f'Passing number of bunches requires LiberaBBBData (but got {type(libera_data)}).' if ninterpol is None: ninterpol = 1 noverlap = (nperseg - nperseg//ninterpol) if noverlap is None else noverlap # iterate bunches turns, values, times, frevs = [], [], [], [] iterate_bunches = [0] if bunches is None else range(bunches) for b in iterate_bunches: # extract turn-by-turn data for single bunch _libera_data = libera_data if bunches is None else libera_data.to_tbt_data(bunches, b=b) _turn_range = turn_or_time_range(_libera_data.t, turn_range, time_range) # crop by turn or time _b_range = slice(None, None) if bunches is None else slice(nperseg*b//bunches, None) # to shift fft window _tbt_data = getattr(_libera_data, xy)[_turn_range][_b_range] # compute STFT tune, idx, _value = scipy.signal.stft(_tbt_data, fs=1, nperseg=nperseg, noverlap=noverlap, window='boxcar', boundary=None, padded=False) idx = idx.astype(int) _turn = np.arange(len(_libera_data.t))[_turn_range][_b_range][0] + idx _time = _libera_data.t[_turn_range][_b_range][idx] _frev = scipy.ndimage.uniform_filter1d(1/np.diff(_libera_data.t)[_turn_range][_b_range], size=nperseg)[idx] turns.append(_turn); values.append(_value); times.append(_time); frevs.append(_frev) # interleave STFTs from single bunches # (we can't just pass fs=bunches to STFT because their phase is not related) if bunches is not None and bunches > 1 and noverlap > 0: raise NotImplementedError('Multi-bunch spectra are currently not supported with non-zero overlap in STFT. Either pass TBTData or noverlap=0') turn = np.empty((sum([t.shape[0] for t in turns]),), dtype=turns[0].dtype) time = np.empty((sum([t.shape[0] for t in times]),), dtype=times[0].dtype) frev = np.empty((sum([t.shape[0] for t in frevs]),), dtype=frevs[0].dtype) value = np.empty((values[0].shape[0], sum([v.shape[1] for v in values])), dtype=values[0].dtype) for b in iterate_bunches: turn[b::bunches] = turns[b] time[b::bunches] = times[b] frev[b::bunches] = frevs[b] value[:,b::bunches] = values[b] # magnitude mag = np.abs(value) #mag[0,:] = 0 # supress DC # what to plot on x-axis xdata = time if over_time else turn # crop tune if tune_range is not None: mask = irng(tune, *tune_range) tune, mag = tune[mask], mag[mask, :] else: tune_range = (0, 0.5) # finally plotting it if over_time: # pcolormesh can handle non-equidistant data, but is not well suited for interactive plots (slow!) cm = ax.pcolormesh(xdata, tune, mag, shading='nearest', cmap=cmap, #cmap='gist_heat_r', vmin=vmin or np.percentile(mag, 0.5), vmax=vmax or np.percentile(mag, 99.5), #cmap='plasma_r', #norm=mpl.colors.LogNorm(), #norm=mpl.colors.LogNorm(vmin=np.nanmean(mag)/5, vmax=np.nanmean(mag)*1000), #vmin=np.nanmean(mag), vmax=np.nanmean(mag)+np.nanstd(mag), ) else: # imshow is much faster, but can only handle equidistant data cm = ax.imshow(mag, extent=(xdata[0], xdata[-1], tune[-1], tune[0]), aspect='auto', rasterized=True, cmap=cmap, #cmap='plasma_r', vmin=vmin or np.percentile(mag, 1), vmax=vmax or np.percentile(mag, 99), ) if colorbar: ax.get_figure().colorbar(cm, label='FFT magnitude', ax=ax) if show_nperseg and not over_time: add_scale(ax, nperseg) # indicate excitation region if excitation is not None: ex_type, ex_q, *ex_args = excitation ex_style = dict(lw=1, ls=':', c='k', alpha=0.5, zorder=50) if ex_type == 'band': ex_dq = ex_args[0]/frev ax.plot(xdata, ex_q+ex_dq, xdata, ex_q-ex_dq, **ex_style) elif ex_type == 'sine': ax.plot(xdata, ex_q*np.ones_like(xdata), **ex_style) elif ex_type == 'chirp': ex_dq = ex_args[0]/frev ex_fc, ex_pc = ex_args[1:3] ax.plot(xdata, ex_q + ex_dq/2*np.sin(2*np.pi*ex_fc*time + ex_pc), **ex_style) else: raise NotImpementedError(f'Excitation type {ex_type} not implemented') ax.set(ylim=tune_range, ylabel=f'Tune $q_{xy}$', xlabel='Time / s' if over_time else 'Turn') # or $1-q_{xy}$') return xdata, tune, mag, frev