use crate::error::OpossumError; use ndarray::Array1; use ndarray_interp::Interp1DBuilder; use ndarray_interp::Interp1DStrategy::Linear; use std::fmt::Display; use std::ops::Range; use uom::fmt::DisplayStyle::Abbreviation; use uom::num_traits::Zero; use uom::si::length::meter; use uom::si::{f64::Length, length::nanometer}; type Result<T> = std::result::Result<T, OpossumError>; pub struct Spectrum { data: Array1<f64>, // data in 1/meters lambdas: Array1<f64>, // wavelength in meters } impl Spectrum { pub fn new(range: Range<Length>, resolution: Length) -> Result<Self> { if resolution <= Length::zero() { return Err(OpossumError::Spectrum("resolution must be positive".into())); } if range.start >= range.end { return Err(OpossumError::Spectrum( "wavelength range must be in ascending order".into(), )); } if range.start <= Length::zero() || range.end <= Length::zero() { return Err(OpossumError::Spectrum( "wavelength range limits must both be positive".into(), )); } let l = Array1::range( range.start.get::<meter>(), range.end.get::<meter>(), resolution.get::<meter>(), ); let length = l.len(); Ok(Self { lambdas: l, data: Array1::zeros(length), }) } pub fn set_single_peak(&mut self, wavelength: Length, value: f64) -> Result<()> { let spectrum_range = self.lambdas.first().unwrap()..self.lambdas.last().unwrap(); if !spectrum_range.contains(&&wavelength.get::<meter>()) { return Err(OpossumError::Spectrum( "wavelength is not in spectrum range".into(), )); } if value < 0.0 { return Err(OpossumError::Spectrum("energy must be positive".into())); } let wavelength_in_meters = wavelength.get::<meter>(); let idx = self .lambdas .clone() .into_iter() .position(|w| w >= wavelength_in_meters); if let Some(idx) = idx { if idx == 0 { let delta = self.lambdas.get(1).unwrap() - self.lambdas.get(0).unwrap(); self.data[0] = value / delta; } else { let lower_lambda = self.lambdas.get(idx - 1).unwrap(); let upper_lambda = self.lambdas.get(idx).unwrap(); let delta = upper_lambda - lower_lambda; self.data[idx - 1] = value * (1.0 - (wavelength_in_meters - lower_lambda) / delta) / delta; self.data[idx] = value * (wavelength_in_meters - lower_lambda) / delta / delta; } Ok(()) } else { Err(OpossumError::Spectrum("insertion point not found".into())) } } pub fn total_energy(&self) -> f64 { let mut total_energy = 0.0; for data in self.data.iter().enumerate() { if data.0 < self.data.len() - 1 { let delta = self.lambdas.get(data.0 + 1).unwrap() - self.lambdas.get(data.0).unwrap(); total_energy += *data.1 * delta; } } total_energy } pub fn scale_vertical(&mut self, factor: f64) -> Result<()> { if factor < 0.0 { return Err(OpossumError::Spectrum( "scaling factor mus be >= 0.0".into(), )); } self.data = &self.data * factor; Ok(()) } pub fn resample(&mut self, spectrum: &Spectrum) -> Result<()> { let data = spectrum.data.clone(); let x = spectrum.lambdas.clone(); let interpolator = Interp1DBuilder::new(data) .x(x) .strategy(Linear { extrapolate: false }) .build() .unwrap(); let max_idx= self.data.len(); let integration_step_size=0.05; for x in self.data.iter_mut().enumerate() { if x.0 < max_idx-1 { let lower_bound= *self.lambdas.get(x.0).unwrap(); let upper_bound = *self.lambdas.get(x.0+1).unwrap(); let integration_x=Array1::range(lower_bound, upper_bound, integration_step_size); println!("integrate at: {}",integration_x); let mut integration_sum=0.0; for i_x in integration_x.iter() { integration_sum+=interpolator.interp_scalar(*i_x).unwrap(); } *x.1=integration_sum*integration_step_size; println!("sum={}", *x.1); } } //self.data = interpolator.interp_array(&query).unwrap(); Ok(()) } pub fn filter(&mut self, _spectrum: &Spectrum) -> Result<()> { Ok(()) } } impl Display for Spectrum { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { let fmt_length = Length::format_args(nanometer, Abbreviation); for value in self.data.iter().enumerate() { write!( f, "{:7.2} -> {}\n", fmt_length.with(Length::new::<meter>(self.lambdas[value.0])), *value.1 ) .unwrap(); } write!(f, "\nTotal energy: {}", self.total_energy()) } } #[cfg(test)] mod test { use super::*; use ndarray::array; #[test] fn new() { let s = Spectrum::new( Length::new::<meter>(1.0)..Length::new::<meter>(4.0), Length::new::<meter>(0.5), ); assert_eq!(s.is_ok(), true); assert_eq!( s.as_ref().unwrap().lambdas, array![1.0, 1.5, 2.0, 2.5, 3.0, 3.5] ); assert_eq!(s.unwrap().data, array![0.0, 0.0, 0.0, 0.0, 0.0, 0.0]); } #[test] fn new_negative_resolution() { let s = Spectrum::new( Length::new::<meter>(1.0)..Length::new::<meter>(4.0), Length::new::<meter>(-0.5), ); assert_eq!(s.is_ok(), false); } #[test] fn new_wrong_range() { let s = Spectrum::new( Length::new::<meter>(4.0)..Length::new::<meter>(1.0), Length::new::<meter>(0.5), ); assert_eq!(s.is_ok(), false); } #[test] fn new_negative_range() { let s = Spectrum::new( Length::new::<meter>(-1.0)..Length::new::<meter>(4.0), Length::new::<meter>(0.5), ); assert_eq!(s.is_ok(), false); } #[test] fn set_single_peak() { let mut s = Spectrum::new( Length::new::<meter>(1.0)..Length::new::<meter>(4.0), Length::new::<meter>(0.5), ) .unwrap(); assert_eq!( s.set_single_peak(Length::new::<meter>(2.0), 1.0).is_ok(), true ); assert_eq!(s.data[2], 2.0); } #[test] fn set_single_peak_interpolated() { let mut s = Spectrum::new( Length::new::<meter>(1.0)..Length::new::<meter>(4.0), Length::new::<meter>(0.5), ) .unwrap(); assert_eq!( s.set_single_peak(Length::new::<meter>(2.25), 1.0).is_ok(), true ); assert_eq!(s.data[2], 1.0); assert_eq!(s.data[3], 1.0); } #[test] fn set_single_peak_lower_bound() { let mut s = Spectrum::new( Length::new::<meter>(1.0)..Length::new::<meter>(4.0), Length::new::<meter>(0.5), ) .unwrap(); assert_eq!( s.set_single_peak(Length::new::<meter>(1.0), 1.0).is_ok(), true ); assert_eq!(s.data[0], 2.0); } #[test] fn set_single_peak_out_of_limit() { let mut s = Spectrum::new( Length::new::<meter>(1.0)..Length::new::<meter>(4.0), Length::new::<meter>(1.0), ) .unwrap(); assert_eq!( s.set_single_peak(Length::new::<meter>(0.5), 1.0).is_ok(), false ); assert_eq!( s.set_single_peak(Length::new::<meter>(4.0), 1.0).is_ok(), false ); } #[test] fn set_single_peak_negative_energy() { let mut s = Spectrum::new( Length::new::<meter>(1.0)..Length::new::<meter>(4.0), Length::new::<meter>(1.0), ) .unwrap(); assert_eq!( s.set_single_peak(Length::new::<meter>(1.5), -1.0).is_ok(), false ); } #[test] fn total_energy() { let mut s = Spectrum::new( Length::new::<meter>(1.0)..Length::new::<meter>(4.0), Length::new::<meter>(0.5), ) .unwrap(); s.set_single_peak(Length::new::<meter>(2.0), 1.0).unwrap(); assert_eq!(s.total_energy(), 1.0); } #[test] fn scale_vertical() { let mut s = Spectrum::new( Length::new::<meter>(1.0)..Length::new::<meter>(5.0), Length::new::<meter>(1.0), ) .unwrap(); s.set_single_peak(Length::new::<meter>(2.5), 1.0).unwrap(); assert_eq!(s.scale_vertical(0.5).is_ok(), true); assert_eq!(s.data, array![0.0, 0.25, 0.25, 0.0]); } #[test] fn scale_vertical_negative() { let mut s = Spectrum::new( Length::new::<meter>(1.0)..Length::new::<meter>(5.0), Length::new::<meter>(1.0), ) .unwrap(); s.set_single_peak(Length::new::<meter>(2.5), 1.0).unwrap(); assert_eq!(s.scale_vertical(-0.5).is_ok(), false); } // #[test] // fn resample() { // let mut s1 = Spectrum::new( // Length::new::<meter>(1.0)..Length::new::<meter>(5.0), // Length::new::<meter>(1.0), // ) // .unwrap(); // s1.set_single_peak(Length::new::<meter>(2.0), 1.0).unwrap(); // let s2 = Spectrum::new( // Length::new::<meter>(1.0)..Length::new::<meter>(5.0), // Length::new::<meter>(1.0), // ) // .unwrap(); // s1.resample(&s2).unwrap(); // assert_eq!(s1.data, s2.data); // } #[test] fn resample_interp() { let mut s1 = Spectrum::new( Length::new::<meter>(1.5)..Length::new::<meter>(5.0), Length::new::<meter>(1.0), ) .unwrap(); let mut s2 = Spectrum::new( Length::new::<meter>(1.0)..Length::new::<meter>(6.0), Length::new::<meter>(0.5), ) .unwrap(); s2.set_single_peak(Length::new::<meter>(2.5), 1.0).unwrap(); println!("s2: {}", s2); s1.resample(&s2).unwrap(); assert_eq!(s1.data, array![0.0, 0.5, 0.5, 0.0]); } }