use std::fmt::Debug; use crate::analyzer::AnalyzerType; use crate::lightdata::LightData; use crate::optic_ports::OpticPorts; pub type LightResult=Vec<(String,LightData)>; /// An [`OpticNode`] is the basic struct representing an optical component. pub struct OpticNode { name: String, node: Box<dyn OpticComponent>, ports: OpticPorts } impl OpticNode { /// Creates a new [`OpticNode`]. The concrete type of the component must be given while using the `new` function. /// The node type ist a struct implementing the [`Optical`] trait. Since the size of the node type is not known at compile time it must be added as `Box<nodetype>`. /// /// # Examples /// /// ``` /// use opossum::optic_node::OpticNode; /// use opossum::nodes::NodeDummy; /// /// let node=OpticNode::new("My node", NodeDummy); /// ``` pub fn new<T: OpticComponent+ 'static>(name: &str, node_type: T) -> Self { let ports=node_type.ports(); Self { name: name.into(), node: Box::new(node_type), ports } } /// Sets the name of this [`OpticNode`]. pub fn set_name(&mut self, name: String) { self.name = name; } /// Returns a reference to the name of this [`OpticNode`]. pub fn name(&self) -> &str { self.name.as_ref() } /// Returns a string representation of the [`OpticNode`] in `graphviz` format including port visualization. /// This function is normally called by the top-level `to_dot`function within `OpticScenery`. pub fn to_dot(&self, node_index: &str) -> String{ self.node.to_dot(node_index, &self.name, self.inverted(), &self.node.ports()) } /// Returns the concrete node type as string representation. pub fn node_type(&self) -> &str { self.node.node_type() } /// Mark the [`OpticNode`] as inverted. /// /// This means that the node is used in "reverse" direction. All output port become input parts and vice versa. pub fn set_inverted(&mut self, inverted: bool) { self.ports.set_inverted(inverted) } /// Returns if the [`OpticNode`] is used in reversed direction. pub fn inverted(&self) -> bool { self.ports.inverted() } /// Returns a reference to the [`OpticPorts`] of this [`OpticNode`]. pub fn ports(&self) -> &OpticPorts { &self.ports } pub fn analyze(&mut self, incoming_data: LightResult, analyzer_type: &AnalyzerType) -> LightResult { self.node.analyze(incoming_data, analyzer_type) } } impl Debug for OpticNode { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f, "{} - {:?}", self.name, self.node) } } /// This trait must be implemented by all concrete optical components. pub trait Optical { /// Return the type of the optical component (lens, filter, ...). The default implementation returns "undefined". fn node_type(&self) -> &str { "undefined" } fn ports(&self) -> OpticPorts { OpticPorts::default() } fn analyze(&mut self, _incoming_data: LightResult, _analyzer_type: &AnalyzerType) -> LightResult { print!("{}: No analyze function defined.", self.node_type()); LightResult::default() } } //this trait deals with the translation of the OpticScenery-graph structure to the dot-file format which is needed to visualize the graphs pub trait Dottable { /// Return component type specific code in 'dot' format for `graphviz` visualization. fn to_dot(&self, node_index: &str, name: &str, inverted: bool, ports: &OpticPorts) -> String{ let inv_string = if inverted { " (inv)" } else { "" }; let node_name = format!("{}{}", name, inv_string); let mut dot_str = format!("\ti{} [\n\t\tshape=plaintext\n", node_index); let mut indent_level = 2; dot_str.push_str(&self.add_html_like_labels(&node_name, &mut indent_level, ports, inverted)); dot_str } // creates a table-cell wrapper around an "inner" string fn add_table_cell_container(&self, inner_str: &str, border_flag: bool, indent_level: &mut i32) -> String { if inner_str.is_empty() { format!("{}<TD BORDER=\"{}\">{}</TD>\n", "\t".repeat(*indent_level as usize), border_flag, inner_str) } else{ format!("{}<TD BORDER=\"{}\">{}{}{}</TD>\n", "\t".repeat(*indent_level as usize), border_flag, inner_str, "\t".repeat((*indent_level+1) as usize ), "\t".repeat(*indent_level as usize)) } } /// create the dot-string of each port fn create_port_cell_str(&self, port_name: &str, input_flag:bool, port_index: usize, indent_level: &mut i32) -> String { // inputs marked as green, outputs as blue let color_str = if input_flag {"\"lightgreen\""} else {"\"lightblue\""}; // part of the tooltip that describes if the port is an input or output let in_out_str = if input_flag {"Input port"} else {"Output port"}; format!("{}<TD PORT=\"{}\" BORDER=\"1\" BGCOLOR={} HREF=\"\" TOOLTIP=\"{} {}: {}\">{}</TD>\n", "\t".repeat(*indent_level as usize), port_name, color_str, in_out_str, port_index, port_name, port_index) } /// create the dot-string that describes the ports, including their row/table/cell wrappers fn create_port_cells_str(&self, input_flag:bool, indent_level: &mut i32, indent_incr: i32, ports: &OpticPorts) -> String{ let mut ports = if input_flag {ports.inputs()} else {ports.outputs()}; ports.sort(); let mut dot_str = self.create_html_like_container("row", indent_level, true, 1); dot_str.push_str(&self.create_html_like_container("cell", indent_level, true, 1)); dot_str.push_str(&self.create_html_like_container("table", indent_level, true, 1)); dot_str.push_str(&self.create_html_like_container("row", indent_level, true, 1)); dot_str.push_str(&self.add_table_cell_container("", false, indent_level)); let mut port_index = 1; for port in ports{ dot_str.push_str(&self.create_port_cell_str(&port, input_flag, port_index, indent_level)); dot_str.push_str(&self.add_table_cell_container("", false, indent_level)); port_index += 1; }; *indent_level -= 1; dot_str.push_str(&self.create_html_like_container("row", indent_level, false,-1)); dot_str.push_str(&self.create_html_like_container("table", indent_level, false,-1)); dot_str.push_str(&self.create_html_like_container("cell", indent_level, false,-1)); dot_str.push_str(&self.create_html_like_container("row", indent_level, false,indent_incr)); dot_str } fn node_color(&self) -> &str { "lightgray" } fn create_main_node_row_str(&self, node_name: &str, indent_level: &mut i32)->String { let mut dot_str = self.create_html_like_container("row", indent_level, true, 1); dot_str.push_str(&format!("{}<TD BORDER=\"1\" BGCOLOR=\"{}\" ALIGN=\"CENTER\" WIDTH=\"80\" CELLPADDING=\"10\" HEIGHT=\"80\" STYLE=\"ROUNDED\">{}</TD>\n", "\t".repeat(*indent_level as usize), self.node_color(), node_name)); *indent_level -= 1; dot_str.push_str(&self.create_html_like_container("row", indent_level, false, 0)); dot_str } /// starts or ends an html-like container fn create_html_like_container(&self, container_str: &str, indent_level: &mut i32, start_flag:bool, indent_incr: i32) -> String{ let container = match container_str{ "row" => if start_flag{"<TR>"} else {"</TR>"}, "cell" => if start_flag{"<TD BORDER=\"0\">"} else {"</TD>"}, "table" => if start_flag{"<TABLE BORDER=\"0\" CELLBORDER=\"0\" CELLSPACING=\"0\" CELLPADDING=\"0\" ALIGN=\"CENTER\">"} else {"</TABLE>"}, _ => "Invalid container string!", }; let new_str = "\t".repeat(*indent_level as usize) + container + "\n"; *indent_level += indent_incr; new_str } /// creates the node label defined by html-like strings fn add_html_like_labels(&self, node_name: &str, indent_level: &mut i32, ports: &OpticPorts, inverted: bool) -> String{ let mut dot_str = "\t\tlabel=<\n".to_owned(); // Start Table environment dot_str.push_str(&self.create_html_like_container("table", indent_level, true, 1)); // add row containing the input ports dot_str.push_str(&self.create_port_cells_str(!inverted, indent_level, 0, ports)); // add row containing the node main dot_str.push_str(&self.create_main_node_row_str(node_name, indent_level)); // add row containing the output ports dot_str.push_str(&self.create_port_cells_str(!inverted, indent_level, -1, ports)); //end table environment dot_str.push_str(&self.create_html_like_container("table", indent_level, false, -1)); //end node-shape description dot_str.push_str(&format!("{}>];\n","\t".repeat(*indent_level as usize) )); dot_str } } pub trait OpticComponent: Optical + Dottable + Debug {} impl<T: Optical + Dottable + Debug> OpticComponent for T {} #[cfg(test)] mod test { use super::OpticNode; use crate::nodes::NodeDummy; #[test] fn new() { let node = OpticNode::new("Test", NodeDummy); assert_eq!(node.name, "Test"); assert_eq!(node.inverted(), false); } #[test] fn set_name() { let mut node = OpticNode::new("Test", NodeDummy); node.set_name("Test2".into()); assert_eq!(node.name, "Test2") } #[test] fn name() { let node = OpticNode::new("Test", NodeDummy); assert_eq!(node.name(), "Test") } #[test] fn set_inverted() { let mut node = OpticNode::new("Test", NodeDummy); node.set_inverted(true); assert_eq!(node.inverted(), true) } #[test] fn inverted() { let mut node = OpticNode::new("Test", NodeDummy); node.set_inverted(true); assert_eq!(node.inverted(), true) } #[test] fn to_dot() { let node = OpticNode::new("Test", NodeDummy); assert_eq!(node.to_dot("i0"), " i0 [label=\"Test\"]\n".to_owned()) } #[test] fn to_dot_inverted() { let mut node = OpticNode::new("Test", NodeDummy); node.set_inverted(true); assert_eq!(node.to_dot("i0"), " i0 [label=\"Test(inv)\"]\n".to_owned()) } #[test] fn node_type() { let node = OpticNode::new("Test", NodeDummy); assert_eq!(node.node_type(), "dummy"); } }