Skip to content
Snippets Groups Projects
Commit 1ae11b2a authored by Philipp Niedermayer's avatar Philipp Niedermayer
Browse files

Add TDC data plotting

parent a3363162
No related branches found
No related tags found
No related merge requests found
......@@ -485,3 +485,96 @@ def plot_beam_size(ax, ipm_data, xy, time_range=None, smoothing=None, **kwargs):
ls, = ax.plot(ipm_data.t[mask], v, **kwargs)
ax.fill_between(ipm_data.t[mask], v-ve, v+ve, alpha=0.3, color=ls.get_color(), zorder=-10)
ax.set(ylabel=f'Beam size $\\sigma_{xy}$ / mm', xlabel='Time / s')
# TDC data
###########
def plot_spill_intensity(ax, spill_data, bin_time=10e-6, *, cumulative=False, rate=False):
"""Plot spill intensity (binned particle counts) over extraction time
:param ax: Axis to plot onto
:param spill_data: Instance of TDCSpill
:param bin_time: width of bins for particle counting in sec
"""
nbins = int(np.ceil(spill_data.length/bin_time))
weights = np.ones_like(spill_data.hittimes)/bin_time if rate else None
ax.hist(spill_data.hittimes, range=(spill_data.time_offset, spill_data.time_offset+bin_time*nbins), bins=nbins,
histtype='step', cumulative=cumulative, weights=weights)
ax.set(xlabel='Extraction time / s', xlim=(spill_data.time_offset, spill_data.time_offset+bin_time*nbins),
ylabel='Extracted particles' + ('' if cumulative else ' / s' if rate else f' / ${(bin_time*SI.s).to_compact():~gL}$ interval'))
def plot_spill_duty_factor(ax, spill_data, count_bin_time=10e-6, evaluate_bin_time=10e-3, *, show_poisson_limit=False, **kwargs):
"""Plot spill intensity (binned particle counts) over extraction time
:param ax: Axis to plot onto
:param spill_data: Instance of TDCSpill
:param count_bin_time: width of bins for particle counting in sec
:param evaluate_bin_time: width of bins for duty factor evaluation (value is rounded to the next multiple of count_bin_time)
:param show_poisson_limit: if true, show poison limit of duty factor
"""
cbins = int(np.ceil(spill_data.length/count_bin_time))
hist = np.histogram(spill_data.hittimes, bins=cbins,
range=(spill_data.time_offset, spill_data.time_offset+count_bin_time*cbins))
ebins = int(round(evaluate_bin_time/count_bin_time))
counts = hist[0][:int(len(hist[0])/ebins)*ebins].reshape((-1, ebins))
edges = hist[1][:int(len(hist[0])/ebins+1)*ebins:ebins]
# spill duty factor
F = np.mean(counts, axis=1)**2 / np.mean(counts**2, axis=1)
ax.stairs(F, edges, **kwargs)
if show_poisson_limit:
Fp = np.mean(counts, axis=1) / ( np.mean(counts, axis=1) + 1 )
ax.stairs(Fp, edges, color='gray', label='Poisson limit', zorder=-1)
ax.set(xlabel='Extraction time / s', ylim=(0,1.1),
ylabel=f'Spill duty factor F\n(${(evaluate_bin_time*SI.s).to_compact():~gL}$ / ${(count_bin_time*SI.s).to_compact():~gL}$ intervals)'
)
def plot_spill_consecutive_particle_delay(ax, spill_data, limit=5e-6, resolution=10e-9):
"""Plot consecutive particle separation (particle-interval histograms)
:param ax: Axis to plot onto
:param spill_data: Instance of TDCSpill
:param limit: maximum delay to plot (range of histogram)
:param resolution: time resolution (bin width of histogram)
"""
nbins = int(np.ceil(limit/resolution))
delay = np.diff(spill_data.hittimes)
ax.hist(delay, range=(0, resolution*nbins), bins=nbins, histtype='step') #, weights=np.ones_like(delay)/resolution)
ax.set(xlabel='Delay between consecutive particles / s', xlim=(resolution, resolution*nbins),
ylabel=f'particle count / ${(resolution*SI.s).to_compact():~gL}$ delay interval')
#TODO: plot poison statistics
def plot_spill_frequency_spectrum(ax, spill_data, fmax=100e3):
"""Plot frequency spectrum of particle arrival times
:param ax: Axis to plot onto
:param spill_data: Instance of TDCSpill
:param fmax: maximum frequency for analysis in Hz
:param bins: number of bins for fft
"""
# re-sample timestamps into equally sampled time series
dt = 1/2/fmax
bins = int(spill_data.length/dt)
timeseries, _ = np.histogram(spill_data.hittimes, bins=bins, range=(spill_data.time_offset, spill_data.time_offset + bins*dt))
# frequency analysis
freq = np.fft.rfftfreq(len(timeseries), d=dt)[1:]
mag = np.abs(np.fft.rfft(timeseries))[1:]
# plot
ax.plot(freq, mag)
ax.set(xlabel=f'Frequency / Hz', xlim=(0, fmax),
ylabel='Magnitude / a.u.', ylim=(0, 1.1*max(mag)))
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment