Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
BEA data analysis utils
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Model registry
Analyze
Contributor analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Philipp Niedermayer
BEA data analysis utils
Commits
60212b60
Commit
60212b60
authored
2 years ago
by
Philipp Niedermayer
Browse files
Options
Downloads
Patches
Plain Diff
Plot fitted tune peak
parent
b1eacb84
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
fitting.py
+11
-4
11 additions, 4 deletions
fitting.py
plotting.py
+29
-3
29 additions, 3 deletions
plotting.py
with
40 additions
and
7 deletions
fitting.py
+
11
−
4
View file @
60212b60
...
...
@@ -9,22 +9,29 @@ def fit_gaussian(S, V, **kwargs):
vp
=
np
.
max
(
V
)
-
v0
s0
=
S
[
np
.
argmax
(
V
)]
sigma
=
np
.
sqrt
(
np
.
abs
(
np
.
sum
((
S
-
s0
)
**
2
*
V
)
/
np
.
sum
(
V
)))
return
fit_function
(
gauss
,
S
,
V
,
p0
=
(
v0
,
vp
,
s0
,
sigma
),
bounds
=
((
-
np
.
inf
,
-
np
.
inf
,
-
np
.
inf
,
0
),
(
np
.
inf
,
np
.
inf
,
np
.
inf
,
np
.
inf
)),
**
kwargs
)
result
=
fit_function
(
gauss
,
S
,
V
,
p0
=
(
v0
,
vp
,
s0
,
sigma
),
**
kwargs
)
param
,
param_error
,
function
,
[
X
,
_
]
=
result
param
[
3
]
=
np
.
abs
(
param
[
3
])
# return the positive sigma (could use bounds instead, but that's more likely to fail)
return
param
,
param_error
,
function
,
[
X
,
lorenzian
(
X
,
*
param
)]
def
fit_lorenzian
(
S
,
V
,
log
=
False
,
**
kwargs
):
lorenzian
=
lambda
s
,
v0
,
vp
,
s0
,
gamma
:
v0
+
vp
/
(
1
+
((
s
-
s0
)
/
gamma
)
**
2
)
v0
=
np
.
min
(
V
)
vp
=
np
.
max
(
V
)
-
v0
s0
=
S
[
np
.
argmax
(
V
)]
sigma
=
np
.
sqrt
(
np
.
abs
(
np
.
sum
((
S
-
s0
)
**
2
*
V
)
/
np
.
sum
(
V
)))
return
fit_function
(
lorenzian
,
S
,
V
,
p0
=
(
v0
,
vp
,
s0
,
sigma
),
bounds
=
((
-
np
.
inf
,
-
np
.
inf
,
-
np
.
inf
,
0
),
(
np
.
inf
,
np
.
inf
,
np
.
inf
,
np
.
inf
)),
**
kwargs
)
sigma
=
np
.
sqrt
(
np
.
abs
(
np
.
sum
((
S
-
s0
)
**
2
*
(
V
-
v0
))
/
np
.
sum
(
V
-
v0
)))
result
=
fit_function
(
lorenzian
,
S
,
V
,
p0
=
(
v0
,
vp
,
s0
,
sigma
),
**
kwargs
)
param
,
param_error
,
function
,
[
X
,
_
]
=
result
param
[
3
]
=
np
.
abs
(
param
[
3
])
# return the positive sigma (could use bounds instead, but that's more likely to fail)
return
param
,
param_error
,
function
,
[
X
,
lorenzian
(
X
,
*
param
)]
def
fit_function
(
function
,
x
,
y
,
p0
=
None
,
**
kwargs
):
"""
:param log: if the y-data is log-scaled
"""
param
,
cov
=
scipy
.
optimize
.
curve_fit
(
function
,
x
,
y
,
p0
,
**
kwargs
)
param_error
=
np
.
sqrt
(
cov
.
diagonal
())
param_error
=
np
.
sqrt
(
np
.
abs
(
cov
.
diagonal
())
)
X
=
np
.
linspace
(
min
(
x
),
max
(
x
),
1000
)
return
param
,
param_error
,
function
,
[
X
,
function
(
X
,
*
param
)]
...
...
This diff is collapsed.
Click to expand it.
plotting.py
+
29
−
3
View file @
60212b60
...
...
@@ -2,10 +2,19 @@ import scipy
import
numpy
as
np
import
matplotlib
as
mpl
import
matplotlib.pyplot
as
plt
import
pint
from
.data
import
*
from
.fitting
import
*
# Setup pint
SI
=
pint
.
UnitRegistry
()
SI
.
setup_matplotlib
()
SI
.
default_format
=
'
~P
'
# Colors
# https://arxiv.org/abs/2107.02270
petroff_colors
=
[
"
#3f90da
"
,
"
#ffa90e
"
,
"
#bd1f01
"
,
"
#94a4a2
"
,
"
#832db6
"
,
"
#a96b59
"
,
"
#e76300
"
,
"
#b9ac70
"
,
"
#717581
"
,
"
#92dadd
"
]
cmap_petroff_10
=
mpl
.
colors
.
ListedColormap
(
petroff_colors
,
'
Petroff 10
'
)
...
...
@@ -22,6 +31,8 @@ cmap_petroff_bipolar.set_over(petroff_colors[8])
def
add_vline
(
axes
,
r
,
color
=
'
k
'
,
text
=
None
,
label
=
None
,
order
=
None
,
lw
=
1
,
text_top
=
True
,
text_vertical
=
True
,
zorder
=-
100
,
**
kwargs
):
for
i
,
a
in
enumerate
(
axes
):
if
a
is
None
:
continue
...
...
@@ -86,7 +97,8 @@ def plot_tbt(ax, libera_data, over_time=True, turn_range=None, time_range=None):
ax2
.
legend
([
lf
,
ls
],
[
'
Revolution frequency
'
,
'
Pickup sum signal
'
],
loc
=
'
center right
'
,
fontsize
=
'
small
'
)
def
plot_tune_spectrum
(
ax
,
libera_data
,
xy
,
turn_range
=
None
,
time_range
=
None
,
tune_range
=
None
,
**
kwargs
):
def
plot_tune_spectrum
(
ax
,
libera_data
,
xy
,
turn_range
=
None
,
time_range
=
None
,
tune_range
=
None
,
fit
=
False
,
**
kwargs
):
"""
Plot a tune spectrum based on turn-by-turn data
:param ax: Axis to plot onto
...
...
@@ -112,7 +124,21 @@ def plot_tune_spectrum(ax, libera_data, xy, turn_range=None, time_range=None, tu
ax
.
plot
(
freq
,
mag
,
**
kwargs
)
ax
.
set
(
xlim
=
tune_range
,
xlabel
=
f
'
Tune $q_
{
xy
}
$
'
,
ylabel
=
'
Magnitude / a.u.
'
)
ylabel
=
'
a.u.
'
)
if
fit
:
try
:
fitr
=
(
fit
if
callable
(
fit
)
else
fit_lorenzian
)(
freq
,
mag
)
q
,
w
=
fitr
[
0
][
2
],
fitr
[
0
][
3
]
if
q
<
0
or
q
>
0.5
or
w
>
0.01
:
raise
RuntimeError
(
'
Fit failed
'
)
except
RuntimeError
:
print
(
'
Warning: fit failed
'
)
else
:
q
=
SI
.
Measurement
(
fitr
[
0
][
2
],
(
fitr
[
1
][
2
]
**
2
+
fitr
[
0
][
3
]
**
2
+
fitr
[
1
][
3
]
**
2
)
**
0.5
,
''
)
# conservative estimate of error including width of peak
ax
.
plot
(
*
fitr
[
-
1
],
'
--
'
,
label
=
f
'
Fit $q_
{
xy
}
=
{
q
:
~
L
}
$
'
)
def
plot_tune_spectrogram
(
ax
,
libera_data
,
xy
,
nperseg
=
2
**
12
,
noverlap
=
None
,
ninterpol
=
4
,
smoothing
=
0
,
over_time
=
True
,
colorbar
=
False
,
...
...
@@ -135,7 +161,7 @@ def plot_tune_spectrogram(ax, libera_data, xy, nperseg=2**12, noverlap=None, nin
tbt_data
=
getattr
(
libera_data
,
xy
)[
turn_range
]
tune
,
turn
,
value
=
scipy
.
signal
.
stft
(
tbt_data
,
fs
=
1
,
nperseg
=
nperseg
,
noverlap
=
noverlap
,
window
=
'
boxcar
'
,
boundary
=
None
,
padded
=
False
)
time
=
libera_data
.
t
[
turn
.
astype
(
int
)]
time
=
libera_data
.
t
[
turn
_range
][
turn
.
astype
(
int
)]
mag
=
np
.
abs
(
value
)
#mag[0,:] = 0 # supress DC
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment