Newer
Older
analyzer::AnalyzerType,
lightdata::{DataEnergy, LightData},
///
/// ## Optical Ports
/// - Inputs
/// - `input1`
/// - `input2`
/// - Outputs
/// - `out1_trans1_refl2`
/// - `out2_trans2_refl1`
///
/// ## Properties
/// - `name`
/// - `ratio`
/// - `inverted`
fn create_default_props() -> Properties {
let mut props = Properties::default();
props.set("name", "beam splitter".into());
props.set("ratio", 0.5.into());
props.set("inverted", false.into());
impl BeamSplitter {
/// Creates a new [`BeamSplitter`] with a given splitting ratio.
/// ## Errors
/// This function returns an [`OpossumError::Other`] if the splitting ratio is outside the closed interval
/// [0.0..1.0].
pub fn new(name: &str, ratio: f64) -> OpmResult<Self> {
} else {
Err(OpossumError::Other(
"splitting ratio must be within (0.0..1.0)".into(),
/// Returns the splitting ratio of this [`BeamSplitter`].
if let Some(value) = self.props.get("ratio") {
if let Proptype::F64(value) = value.prop {
return value;
}
}
panic!("wrong data format")
/// Sets the splitting ratio of this [`BeamSplitter`].
/// ## Errors
/// This function returns an [`OpossumError::Other`] if the splitting ratio is outside the closed interval
/// [0.0..1.0].
Ok(())
} else {
Err(OpossumError::Other(
"splitting ration must be within (0.0..1.0)".into(),
))
}
fn analyze_energy(&mut self, incoming_data: LightResult) -> OpmResult<LightResult> {

Udo Eisenbarth
committed
let (in1, in2) = if !self.inverted() {
(incoming_data.get("input1"), incoming_data.get("input2"))
} else {
(
incoming_data.get("out1_trans1_refl2"),
incoming_data.get("out2_trans2_refl1"),
)
};
let mut out1_1_spectrum: Option<Spectrum> = None;
let mut out1_2_spectrum: Option<Spectrum> = None;
let mut out2_1_spectrum: Option<Spectrum> = None;
let mut out2_2_spectrum: Option<Spectrum> = None;
if let Some(Some(in1)) = in1 {
match in1 {
LightData::Energy(e) => {
let mut s = e.spectrum.clone();
s.scale_vertical(self.ratio()).unwrap();
out1_1_spectrum = Some(s);
s.scale_vertical(1.0 - self.ratio()).unwrap();
_ => {
return Err(OpossumError::Analysis(
"expected DataEnergy value at input port".into(),
))
}
if let Some(Some(in2)) = in2 {
match in2 {
LightData::Energy(e) => {
let mut s = e.spectrum.clone();
s.scale_vertical(self.ratio()).unwrap();
out2_1_spectrum = Some(s);
s.scale_vertical(1.0 - self.ratio()).unwrap();
out2_2_spectrum = Some(s);
}
_ => {
return Err(OpossumError::Analysis(
"expected DataEnergy value at input port".into(),
))
}
let out1_spec = merge_spectra(out1_1_spectrum, out2_2_spectrum);
let out2_spec = merge_spectra(out1_2_spectrum, out2_1_spectrum);
let mut out1_data: Option<LightData> = None;
let mut out2_data: Option<LightData> = None;
if let Some(out1_spec) = out1_spec {
out1_data = Some(LightData::Energy(DataEnergy {
spectrum: out1_spec,
}))
if let Some(out2_spec) = out2_spec {
out2_data = Some(LightData::Energy(DataEnergy {
spectrum: out2_spec,
}))

Udo Eisenbarth
committed
if !self.inverted() {
Ok(HashMap::from([
("out1_trans1_refl2".into(), out1_data),
("out2_trans2_refl1".into(), out2_data),
]))
} else {
Ok(HashMap::from([
("input1".into(), out1_data),
("input2".into(), out2_data),
]))
}
if let Proptype::String(name) = &self.props.get("name").unwrap().prop {
fn ports(&self) -> OpticPorts {
let mut ports = OpticPorts::new();
ports.add_input("input1").unwrap();
ports.add_input("input2").unwrap();
ports.add_output("out1_trans1_refl2").unwrap();
ports.add_output("out2_trans2_refl1").unwrap();

Udo Eisenbarth
committed
if self.properties().get_bool("inverted").unwrap().unwrap() {
ports.set_inverted(true)
}
fn analyze(
&mut self,
incoming_data: LightResult,
analyzer_type: &AnalyzerType,
match analyzer_type {
AnalyzerType::Energy => self.analyze_energy(incoming_data),
_ => Err(OpossumError::Analysis(
"analysis type not yet implemented".into(),
)),
fn properties(&self) -> &Properties {
&self.props
fn set_property(&mut self, name: &str, prop: Property) -> OpmResult<()> {
if self.props.set(name, prop).is_none() {
Err(OpossumError::Other("property not defined".into()))
} else {
Ok(())
}
}

Udo Eisenbarth
committed
fn inverted(&self) -> bool {
self.properties().get_bool("inverted").unwrap().unwrap()
}
use approx::AbsDiffEq;
use crate::spectrum::create_he_ne_spectrum;
fn default() {
let node = BeamSplitter::default();
assert_eq!(node.ratio(), 0.5);
assert_eq!(node.name(), "beam splitter");
assert_eq!(node.node_type(), "beam splitter");
assert_eq!(node.is_detector(), false);
assert_eq!(node.inverted(), false);
assert_eq!(node.node_color(), "lightpink");
assert!(node.as_group().is_err());
}
#[test]
let splitter = BeamSplitter::new("test", 0.6);
let splitter = splitter.unwrap();
assert_eq!(splitter.name(), "test");
assert_eq!(splitter.ratio(), 0.6);
assert!(BeamSplitter::new("test", -0.01).is_err());
assert!(BeamSplitter::new("test", 1.01).is_err());
let splitter = BeamSplitter::new("test", 0.5).unwrap();
assert_eq!(splitter.ratio(), 0.5);
}
#[test]
fn set_ratio() {
let mut splitter = BeamSplitter::new("test", 0.0).unwrap();
assert!(splitter.set_ratio(1.0).is_ok());
assert_eq!(splitter.ratio(), 1.0);
assert!(splitter.set_ratio(-0.1).is_err());
assert!(splitter.set_ratio(1.1).is_err());
}
#[test]
fn inverted() {
let mut node = BeamSplitter::default();
node.set_property("inverted", true.into()).unwrap();
assert_eq!(node.inverted(), true)
}
#[test]
fn ports() {
let node = BeamSplitter::default();
let mut input_ports = node.ports().inputs();
input_ports.sort();
assert_eq!(input_ports, vec!["input1", "input2"]);
let mut output_ports = node.ports().outputs();
output_ports.sort();
assert_eq!(output_ports, vec!["out1_trans1_refl2", "out2_trans2_refl1"]);
}
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#[test]
fn analyze_wrong_analyszer() {
let mut node = BeamSplitter::default();
let input = LightResult::default();
assert!(node
.analyze(input, &AnalyzerType::ParAxialRayTrace)
.is_err());
}
#[test]
fn analyze_empty_input() {
let mut node = BeamSplitter::default();
let input = LightResult::default();
let output = node.analyze(input, &AnalyzerType::Energy).unwrap();
assert!(output.contains_key("out1_trans1_refl2"));
assert!(output.contains_key("out2_trans2_refl1"));
assert!(output.clone().get("out1_trans1_refl2").unwrap().is_none());
assert!(output.get("out2_trans2_refl1").unwrap().is_none());
}
#[test]
fn analyze_one_input() {
let mut node = BeamSplitter::new("test", 0.6).unwrap();
let mut input = LightResult::default();
input.insert(
"input1".into(),
Some(LightData::Energy(DataEnergy {
spectrum: create_he_ne_spectrum(1.0),
})),
);
let output = node.analyze(input, &AnalyzerType::Energy).unwrap();
let output1_light = LightData::Energy(DataEnergy {
spectrum: create_he_ne_spectrum(0.6),
});
assert_eq!(
output
.clone()
.get("out1_trans1_refl2")
.unwrap()
.clone()
.unwrap(),
output1_light
);
let output2_light = LightData::Energy(DataEnergy {
spectrum: create_he_ne_spectrum(0.4),
});
assert_eq!(
output.get("out2_trans2_refl1").unwrap().clone().unwrap(),
output2_light
);
}
#[test]
fn analyze_two_input() {
let mut node = BeamSplitter::new("test", 0.6).unwrap();
let mut input = LightResult::default();
input.insert(
"input1".into(),
Some(LightData::Energy(DataEnergy {
spectrum: create_he_ne_spectrum(1.0),
})),
);
input.insert(
"input2".into(),
Some(LightData::Energy(DataEnergy {
spectrum: create_he_ne_spectrum(0.5),
})),
);
let output = node.analyze(input, &AnalyzerType::Energy).unwrap();
let energy_output1 = if let LightData::Energy(s) = output
.clone()
.get("out1_trans1_refl2")
.unwrap()
.clone()
.unwrap()
{
s.spectrum.total_energy()
} else {
0.0
};
assert!(energy_output1.abs_diff_eq(&0.8, f64::EPSILON));
let energy_output2 = if let LightData::Energy(s) = output
.clone()
.get("out2_trans2_refl1")
.unwrap()
.clone()
.unwrap()
{
s.spectrum.total_energy()
} else {
0.0
};
assert!(energy_output2.abs_diff_eq(&0.7, f64::EPSILON));
}
#[test]
fn analyze_inverse() {
let mut node = BeamSplitter::new("test", 0.6).unwrap();
node.set_property("inverted", true.into()).unwrap();
let mut input = LightResult::default();
input.insert(
"out1_trans1_refl2".into(),
Some(LightData::Energy(DataEnergy {
spectrum: create_he_ne_spectrum(1.0),
})),
);
input.insert(
"out2_trans2_refl1".into(),
Some(LightData::Energy(DataEnergy {
spectrum: create_he_ne_spectrum(0.5),
})),
);
let output = node.analyze(input, &AnalyzerType::Energy).unwrap();
let energy_output1 =
if let LightData::Energy(s) = output.clone().get("input1").unwrap().clone().unwrap() {
s.spectrum.total_energy()
} else {
0.0
};
assert!(energy_output1.abs_diff_eq(&0.8, f64::EPSILON));
let energy_output2 =
if let LightData::Energy(s) = output.clone().get("input2").unwrap().clone().unwrap() {
s.spectrum.total_energy()
} else {
0.0
};
assert!(energy_output2.abs_diff_eq(&0.7, f64::EPSILON));
}