Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
use crate::lightdata::LightData;
use crate::{
error::OpossumError,
optic_node::{Dottable, LightResult, Optical},
optic_ports::OpticPorts,
};
use std::collections::HashMap;
use std::fmt::Debug;
type Result<T> = std::result::Result<T, OpossumError>;
#[non_exhaustive]
#[derive(Debug, Default, PartialEq, Clone, Copy)]
/// Type of the [`EnergyMeter`]. This is currently not used.
pub enum SpectrometerType {
/// an ideal energy meter
#[default]
IdealSpectrometer,
/// Ocean Optics HR2000
HR2000,
}
#[derive(Default)]
/// (ideal) spectrometer
///
/// It normally measures the total energy of the incoming light regardless of the wavelength, position, angle, polarization etc...
///
/// ## Optical Ports
/// - Inputs
/// - `in1`
/// - Outputs
/// - `out1`
///
/// During analysis, the output port contains a replica of the input port similar to a [`Dummy`](crate::nodes::Dummy) node. This way,
/// different dectector nodes can be "stacked" or used somewhere in between arbitrary optic nodes.
pub struct Spectrometer {
light_data: Option<LightData>,
spectrometer_type: SpectrometerType,
}
impl Spectrometer {
/// Creates a new [`Spectrometer`] of the given [`SpectrometerType`].
pub fn new(spectrometer_type: SpectrometerType) -> Self {
Spectrometer {
light_data: None,
spectrometer_type,
}
}
/// Returns the meter type of this [`Spectrometer`].
pub fn spectrometer_type(&self) -> SpectrometerType {
self.spectrometer_type
}
/// Sets the meter type of this [`EnergyMeter`].
pub fn set_spectrometer_type(&mut self, meter_type: SpectrometerType) {
self.spectrometer_type = meter_type;
}
}
impl Optical for Spectrometer {
fn node_type(&self) -> &str {
"spectrometer"
}
fn ports(&self) -> OpticPorts {
let mut ports = OpticPorts::new();
ports.add_input("in1").unwrap();
ports.add_output("out1").unwrap();
ports
}
fn analyze(
&mut self,
incoming_data: LightResult,
_analyzer_type: &crate::analyzer::AnalyzerType,
) -> Result<LightResult> {
if let Some(data) = incoming_data.get("in1") {
self.light_data = data.clone();
Ok(HashMap::from([("out1".into(), data.clone())]))
} else {
Ok(HashMap::from([("out2".into(), None)]))
}
}
fn export_data(&self, file_name: &str) {
if let Some(data) = &self.light_data {
data.export(file_name)
}
}
fn is_detector(&self) -> bool {
true
}
}
impl Debug for Spectrometer {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match &self.light_data {
Some(data) => write!(f, "{} (Type: {:?})", data, self.spectrometer_type),
None => write!(f, "no data"),
}
}
}
impl Dottable for Spectrometer {
fn node_color(&self) -> &str {
"lightblue"
}
}
#[cfg(test)]
mod test {
use crate::{lightdata::DataEnergy, spectrum::create_he_ne_spectrum, analyzer::AnalyzerType};
use super::*;
#[test]
fn new() {
let meter = Spectrometer::new(SpectrometerType::IdealSpectrometer);
assert!(meter.light_data.is_none());
assert_eq!(meter.spectrometer_type, SpectrometerType::IdealSpectrometer);
}
#[test]
fn default() {
let meter = Spectrometer::default();
assert!(meter.light_data.is_none());
assert_eq!(meter.spectrometer_type, SpectrometerType::IdealSpectrometer);
assert_eq!(meter.node_type(), "spectrometer");
assert_eq!(meter.is_detector(), true);
assert_eq!(meter.node_color(), "XXX");
}
#[test]
fn meter_type() {
let meter = Spectrometer::new(SpectrometerType::IdealSpectrometer);
assert_eq!(meter.spectrometer_type(), SpectrometerType::IdealSpectrometer);
}
#[test]
fn set_meter_type() {
let mut meter = Spectrometer::new(SpectrometerType::IdealSpectrometer);
meter.set_spectrometer_type(SpectrometerType::HR2000);
assert_eq!(meter.spectrometer_type, SpectrometerType::HR2000);
}
#[test]
fn ports() {
let meter = Spectrometer::default();
let ports = meter.ports();
assert_eq!(ports.inputs(), vec!["in1"]);
assert_eq!(ports.outputs(), vec!["out1"]);
}
#[test]
fn analyze() {
let mut meter = Spectrometer::default();
let mut input = LightResult::default();
input.insert(
"in1".into(),
Some(LightData::Energy(DataEnergy {
spectrum: create_he_ne_spectrum(1.0),
})),
);
let result=meter.analyze(input, &AnalyzerType::Energy);
assert!(result.is_ok());
}
}