Newer
Older
use crate::analyzer::AnalyzerType;
use crate::lightdata::LightData;
use crate::optic_ports::OpticPorts;
use std::collections::HashMap;
use std::fmt::Debug;
pub type LightResult = HashMap<String, Option<LightData>>;
type Result<T> = std::result::Result<T, OpossumError>;
/// An [`OpticNode`] is the basic struct representing an optical component.
pub struct OpticNode {
name: String,
node: Box<dyn OpticComponent>,
/// Creates a new [`OpticNode`]. The concrete type of the component must be given while using the `new` function.
/// The node type ist a struct implementing the [`Optical`] trait. Since the size of the node type is not known at compile time it must be added as `Box<nodetype>`.
/// ```
/// use opossum::optic_node::OpticNode;
/// let node=OpticNode::new("My node", Dummy);
pub fn new<T: OpticComponent + 'static>(name: &str, node_type: T) -> Self {
let ports = node_type.ports();
}
/// Sets the name of this [`OpticNode`].
pub fn set_name(&mut self, name: String) {
self.name = name;
}
/// Returns a reference to the name of this [`OpticNode`].
pub fn name(&self) -> &str {
self.name.as_ref()
}
/// Returns a string representation of the [`OpticNode`] in `graphviz` format including port visualization.
/// This function is normally called by the top-level `to_dot`function within `OpticScenery`.
pub fn to_dot(&self, node_index: &str) -> String {
self.node
.to_dot(node_index, &self.name, self.inverted(), &self.node.ports())
/// Returns the concrete node type as string representation.
/// Mark the [`OpticNode`] as inverted.
/// This means that the node is used in "reverse" direction. All output port become input parts and vice versa.
pub fn set_inverted(&mut self, inverted: bool) {
self.ports.set_inverted(inverted)
}
/// Returns if the [`OpticNode`] is used in reversed direction.
pub fn inverted(&self) -> bool {
self.ports.inverted()
/// Returns a reference to the [`OpticPorts`] of this [`OpticNode`].
pub fn ports(&self) -> &OpticPorts {
&self.ports
}
pub fn analyze(
&mut self,
incoming_data: LightResult,
analyzer_type: &AnalyzerType,
) -> Result<LightResult> {
self.node.analyze(incoming_data, analyzer_type)
pub fn export_data(&self) {
let file_name=self.name.to_owned() +".svg";
self.node.export_data(&file_name);
}
impl Debug for OpticNode {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{} - {:?}", self.name, self.node)
/// This trait must be implemented by all concrete optical components.
pub trait Optical {
/// Return the type of the optical component (lens, filter, ...). The default implementation returns "undefined".
fn node_type(&self) -> &str {
"undefined"
fn ports(&self) -> OpticPorts {
OpticPorts::default()
}
fn analyze(
&mut self,
_incoming_data: LightResult,
_analyzer_type: &AnalyzerType,
) -> Result<LightResult> {
print!("{}: No analyze function defined.", self.node_type());
Ok(LightResult::default())
fn export_data(&self, _file_name: &str) {
println!("no export_data function implemented")
}
}
//this trait deals with the translation of the OpticScenery-graph structure to the dot-file format which is needed to visualize the graphs
/// Return component type specific code in 'dot' format for `graphviz` visualization.
fn to_dot(&self, node_index: &str, name: &str, inverted: bool, ports: &OpticPorts) -> String {
let inv_string = if inverted { " (inv)" } else { "" };
let node_name = format!("{}{}", name, inv_string);
let mut dot_str = format!("\ti{} [\n\t\tshape=plaintext\n", node_index);
let mut indent_level = 2;
dot_str.push_str(&self.add_html_like_labels(
&node_name,
&mut indent_level,
ports,
inverted,
));
// creates a table-cell wrapper around an "inner" string
fn add_table_cell_container(
&self,
inner_str: &str,
border_flag: bool,
indent_level: &mut i32,
) -> String {
format!(
"{}<TD BORDER=\"{}\">{}</TD>\n",
"\t".repeat(*indent_level as usize),
border_flag,
inner_str
)
} else {
format!(
"{}<TD BORDER=\"{}\">{}{}{}</TD>\n",
"\t".repeat(*indent_level as usize),
border_flag,
inner_str,
"\t".repeat((*indent_level + 1) as usize),
"\t".repeat(*indent_level as usize)
)
/// create the dot-string of each port
fn create_port_cell_str(
&self,
port_name: &str,
input_flag: bool,
port_index: usize,
indent_level: &mut i32,
) -> String {
// inputs marked as green, outputs as blue
let color_str = if input_flag {
"\"lightgreen\""
} else {
"\"lightblue\""
};
// part of the tooltip that describes if the port is an input or output
let in_out_str = if input_flag {
"Input port"
} else {
"Output port"
};
format!(
"{}<TD PORT=\"{}\" BORDER=\"1\" BGCOLOR={} HREF=\"\" TOOLTIP=\"{} {}: {}\">{}</TD>\n",
"\t".repeat(*indent_level as usize),
port_name,
color_str,
in_out_str,
port_index,
port_name,
port_index
)
}
/// create the dot-string that describes the ports, including their row/table/cell wrappers
fn create_port_cells_str(
&self,
input_flag: bool,
indent_level: &mut i32,
indent_incr: i32,
ports: &OpticPorts,
) -> String {
let mut ports = if input_flag {
ports.inputs()
} else {
ports.outputs()
};
let mut dot_str = self.create_html_like_container("row", indent_level, true, 1);
dot_str.push_str(&self.create_html_like_container("cell", indent_level, true, 1));
dot_str.push_str(&self.create_html_like_container("table", indent_level, true, 1));
dot_str.push_str(&self.create_html_like_container("row", indent_level, true, 1));
dot_str.push_str(&self.add_table_cell_container("", false, indent_level));
let mut port_index = 1;
for port in ports {
dot_str.push_str(&self.create_port_cell_str(
&port,
input_flag,
port_index,
indent_level,
));
dot_str.push_str(&self.add_table_cell_container("", false, indent_level));
port_index += 1;
dot_str.push_str(&self.create_html_like_container("row", indent_level, false, -1));
dot_str.push_str(&self.create_html_like_container("table", indent_level, false, -1));
dot_str.push_str(&self.create_html_like_container("cell", indent_level, false, -1));
dot_str.push_str(&self.create_html_like_container("row", indent_level, false, indent_incr));
fn node_color(&self) -> &str {
"lightgray"
fn create_main_node_row_str(&self, node_name: &str, indent_level: &mut i32) -> String {
let mut dot_str = self.create_html_like_container("row", indent_level, true, 1);
dot_str.push_str(&format!("{}<TD BORDER=\"1\" BGCOLOR=\"{}\" ALIGN=\"CENTER\" WIDTH=\"80\" CELLPADDING=\"10\" HEIGHT=\"80\" STYLE=\"ROUNDED\">{}</TD>\n", "\t".repeat(*indent_level as usize), self.node_color(), node_name));
dot_str.push_str(&self.create_html_like_container("row", indent_level, false, 0));
/// starts or ends an html-like container
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
fn create_html_like_container(
&self,
container_str: &str,
indent_level: &mut i32,
start_flag: bool,
indent_incr: i32,
) -> String {
let container = match container_str {
"row" => {
if start_flag {
"<TR>"
} else {
"</TR>"
}
}
"cell" => {
if start_flag {
"<TD BORDER=\"0\">"
} else {
"</TD>"
}
}
"table" => {
if start_flag {
"<TABLE BORDER=\"0\" CELLBORDER=\"0\" CELLSPACING=\"0\" CELLPADDING=\"0\" ALIGN=\"CENTER\">"
} else {
"</TABLE>"
}
}
_ => "Invalid container string!",
};
let new_str = "\t".repeat(*indent_level as usize) + container + "\n";
*indent_level += indent_incr;
new_str
}
/// creates the node label defined by html-like strings
fn add_html_like_labels(
&self,
node_name: &str,
indent_level: &mut i32,
ports: &OpticPorts,
inverted: bool,
) -> String {
let mut dot_str = "\t\tlabel=<\n".to_owned();
// Start Table environment
dot_str.push_str(&self.create_html_like_container("table", indent_level, true, 1));
// add row containing the input ports
dot_str.push_str(&self.create_port_cells_str(!inverted, indent_level, 0, ports));
dot_str.push_str(&self.create_main_node_row_str(node_name, indent_level));
dot_str.push_str(&self.create_port_cells_str(inverted, indent_level, -1, ports));
//end table environment
dot_str.push_str(&self.create_html_like_container("table", indent_level, false, -1));
//end node-shape description
dot_str.push_str(&format!("{}>];\n", "\t".repeat(*indent_level as usize)));
pub trait OpticComponent: Optical + Dottable + Debug {}
impl<T: Optical + Dottable + Debug> OpticComponent for T {}
#[cfg(test)]
mod test {
use super::OpticNode;
assert_eq!(node.name, "Test");
assert_eq!(node.inverted(), false);
assert_eq!(node.name, "Test2")
assert_eq!(node.name(), "Test")
assert_eq!(node.inverted(), true)
}
#[test]
fn inverted() {
node.set_inverted(true);
assert_eq!(node.inverted(), true)
}
#[test]
assert_eq!(node.to_dot("i0"), " i0 [label=\"Test\"]\n".to_owned())
assert_eq!(node.to_dot("i0"), " i0 [label=\"Test(inv)\"]\n".to_owned())
assert_eq!(node.node_type(), "dummy");
}