Newer
Older
use crate::lightdata::LightData;
use crate::{
error::OpossumError,
optic_node::{Dottable, LightResult, Optical},
optic_ports::OpticPorts,
};
use std::collections::HashMap;
use std::fmt::Debug;
type Result<T> = std::result::Result<T, OpossumError>;
#[non_exhaustive]
#[derive(Debug, Default, PartialEq, Clone, Copy)]
/// Type of the [`EnergyMeter`]. This is currently not used.
pub enum Metertype {
/// an ideal energy meter
}
#[derive(Default)]
/// (ideal) energy / power meter.
/// It normally measures the total energy of the incoming light regardless of the wavelength, position, angle, polarization etc...
///
/// ## Optical Ports
/// - Inputs
/// - `in1`
/// - Outputs
/// - `out1`
///
/// During analysis, the output port contains a replica of the input port similar to a [`Dummy`](crate::nodes::Dummy) node. This way,
/// different dectector nodes can be "stacked" or used somewhere in between arbitrary optic nodes.
pub struct EnergyMeter {
light_data: Option<LightData>,
}
impl EnergyMeter {
/// Creates a new [`EnergyMeter`] of the given [`Metertype`].
pub fn new(meter_type: Metertype) -> Self {
/// Returns the meter type of this [`EnergyMeter`].
pub fn meter_type(&self) -> Metertype {
self.meter_type
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
}
/// Sets the meter type of this [`EnergyMeter`].
pub fn set_meter_type(&mut self, meter_type: Metertype) {
self.meter_type = meter_type;
}
}
impl Optical for EnergyMeter {
fn node_type(&self) -> &str {
"energy meter"
}
fn ports(&self) -> OpticPorts {
let mut ports = OpticPorts::new();
ports.add_input("in1").unwrap();
ports.add_output("out1").unwrap();
ports
}
fn analyze(
&mut self,
incoming_data: LightResult,
_analyzer_type: &crate::analyzer::AnalyzerType,
) -> Result<LightResult> {
if let Some(data) = incoming_data.get("in1") {
self.light_data = data.clone();
Ok(HashMap::from([("out1".into(), data.clone())]))
} else {
Ok(HashMap::from([("out2".into(), None)]))
}
}
fn export_data(&self, file_name: &str) {
if let Some(data) = &self.light_data {
data.export(file_name)
}
}
fn is_detector(&self) -> bool {
true
}
}
impl Debug for EnergyMeter {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match &self.light_data {
Some(data) => write!(f, "{} (Type: {:?})", data, self.meter_type),
None => write!(f, "no data"),
}
}
}
impl Dottable for EnergyMeter {
fn node_color(&self) -> &str {
use crate::{lightdata::DataEnergy, spectrum::create_he_ne_spectrum, analyzer::AnalyzerType};
use super::*;
#[test]
fn new() {
let meter = EnergyMeter::new(Metertype::IdealEnergyMeter);
assert!(meter.light_data.is_none());
assert_eq!(meter.meter_type, Metertype::IdealEnergyMeter);
}
#[test]
fn default() {
let meter = EnergyMeter::default();
assert!(meter.light_data.is_none());
assert_eq!(meter.meter_type, Metertype::IdealEnergyMeter);
assert_eq!(meter.node_type(), "energy meter");
assert_eq!(meter.is_detector(), true);
}
#[test]
fn meter_type() {
let meter = EnergyMeter::new(Metertype::IdealEnergyMeter);
assert_eq!(meter.meter_type(), Metertype::IdealEnergyMeter);
}
#[test]
fn set_meter_type() {
let mut meter = EnergyMeter::new(Metertype::IdealEnergyMeter);
meter.set_meter_type(Metertype::IdealPowerMeter);
assert_eq!(meter.meter_type, Metertype::IdealPowerMeter);
}
#[test]
fn ports() {
let meter = EnergyMeter::new(Metertype::IdealEnergyMeter);
assert_eq!(ports.inputs(), vec!["in1"]);
assert_eq!(ports.outputs(), vec!["out1"]);
}
#[test]
fn analyze() {
let mut meter = EnergyMeter::new(Metertype::IdealEnergyMeter);
let mut input = LightResult::default();
input.insert(
"in1".into(),
Some(LightData::Energy(DataEnergy {
spectrum: create_he_ne_spectrum(1.0),
})),
);
let result=meter.analyze(input, &AnalyzerType::Energy);
assert!(result.is_ok());
}