Newer
Older
use crate::analyzer::AnalyzerType;
use crate::lightdata::LightData;
use crate::optic_node::{Dottable, LightResult};
use crate::{
optic_node::{OpticNode, Optical},
optic_ports::OpticPorts,
};
use petgraph::prelude::{DiGraph, EdgeIndex, NodeIndex};
use petgraph::visit::{EdgeRef, IntoEdgesDirected, IntoNodeReferences};
type Result<T> = std::result::Result<T, OpossumError>;
#[derive(Default, Debug, Clone)]
/// A node that represents a group of other [`OpticNode`]s arranges in a subgraph.
///
/// All unconnected input and output ports of this subgraph form the ports of this [`NodeGroup`].
g: DiGraph<Rc<RefCell<OpticNode>>, Light>,
input_port_map: HashMap<String, (NodeIndex, String)>,
output_port_map: HashMap<String, (NodeIndex, String)>,
}
impl NodeGroup {
pub fn new() -> Self {
Self::default()
}
/// Add a given [`OpticNode`] to the (sub-)graph of this [`NodeGroup`].
///
/// This command just adds an [`OpticNode`] but does not connect it to existing nodes in the (sub-)graph. The given node is
/// consumed (owned) by the [`NodeGroup`].
pub fn add_node(&mut self, node: OpticNode) -> NodeIndex {
self.g.add_node(Rc::new(RefCell::new(node)))
}
/// Connect (already existing) nodes denoted by the respective `NodeIndex`.
///
/// Both node indices must exist. Otherwise an [`OpossumError::OpticScenery`] is returned. In addition, connections are
/// rejected and an [`OpossumError::OpticScenery`] is returned, if the graph would form a cycle (loop in the graph).
if let Some(source) = self.g.node_weight(src_node) {
if !source.borrow().ports().outputs().contains(&src_port.into()) {
return Err(OpossumError::OpticScenery(format!(
"source node {} does not have a port {}",
src_port
)));
}
} else {
return Err(OpossumError::OpticScenery(
"source node with given index does not exist".into(),
));
}
if let Some(target) = self.g.node_weight(target_node) {
if !target
.borrow()
.ports()
.inputs()
.contains(&target_port.into())
{
return Err(OpossumError::OpticScenery(format!(
"target node {} does not have a port {}",
target_port
)));
}
} else {
return Err(OpossumError::OpticScenery(
"target node with given index does not exist".into(),
));
}
if self.src_node_port_exists(src_node, src_port) {
return Err(OpossumError::OpticScenery(format!(
"src node with given port {} is already connected",
src_port
)));
if self.target_node_port_exists(src_node, src_port) {
return Err(OpossumError::OpticScenery(format!(
"target node with given port {} is already connected",
target_port
)));
let edge_index = self
.g
.add_edge(src_node, target_node, Light::new(src_port, target_port));
if is_cyclic_directed(&self.g) {
self.g.remove_edge(edge_index);
return Err(OpossumError::OpticScenery(
"connecting the given nodes would form a loop".into(),
));
fn src_node_port_exists(&self, src_node: NodeIndex, src_port: &str) -> bool {
self.g
.edges_directed(src_node, petgraph::Direction::Outgoing)
.any(|e| e.weight().src_port() == src_port)
}
fn target_node_port_exists(&self, target_node: NodeIndex, target_port: &str) -> bool {
self.g
.edges_directed(target_node, petgraph::Direction::Incoming)
.any(|e| e.weight().target_port() == target_port)
}
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
fn input_nodes(&self) -> Vec<NodeIndex> {
let mut input_nodes: Vec<NodeIndex> = Vec::default();
for node_idx in self.g.node_indices() {
let incoming_edges = self.g.edges_directed(node_idx, Direction::Incoming).count();
let input_ports = self
.g
.node_weight(node_idx)
.unwrap()
.borrow()
.ports()
.inputs()
.len();
if input_ports != incoming_edges {
input_nodes.push(node_idx);
}
}
input_nodes
}
fn output_nodes(&self) -> Vec<NodeIndex> {
let mut output_nodes: Vec<NodeIndex> = Vec::default();
for node_idx in self.g.node_indices() {
let outgoing_edges = self.g.edges_directed(node_idx, Direction::Outgoing).count();
let output_ports = self
.g
.node_weight(node_idx)
.unwrap()
.borrow()
.ports()
.outputs()
.len();
if output_ports != outgoing_edges {
output_nodes.push(node_idx);
}
}
output_nodes
}
pub fn map_input_port(
&mut self,
input_node: NodeIndex,
internal_name: &str,
external_name: &str,
) -> Result<()> {
if self.input_port_map.contains_key(external_name) {
return Err(OpossumError::OpticGroup(
"external input port name already assigned".into(),
));
}
if let Some(node) = self.g.node_weight(input_node) {
if !node
.borrow()
.ports()
.inputs()
.contains(&(internal_name.to_string()))
{
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
return Err(OpossumError::OpticGroup(
"internal input port name not found".into(),
));
}
} else {
return Err(OpossumError::OpticGroup(
"internal node index not found".into(),
));
}
if !(self
.g
.externals(petgraph::Direction::Incoming)
.any(|i| i == input_node))
{
return Err(OpossumError::OpticGroup(
"node to be mapped is not an input node of the group".into(),
));
}
self.input_port_map.insert(
external_name.to_string(),
(input_node, internal_name.to_string()),
);
Ok(())
}
pub fn map_output_port(
&mut self,
output_node: NodeIndex,
internal_name: &str,
external_name: &str,
) -> Result<()> {
if self.output_port_map.contains_key(external_name) {
return Err(OpossumError::OpticGroup(
"external output port name already assigned".into(),
));
}
if let Some(node) = self.g.node_weight(output_node) {
if !node
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
.ports()
.outputs()
.contains(&(internal_name.to_string()))
{
return Err(OpossumError::OpticGroup(
"internal output port name not found".into(),
));
}
} else {
return Err(OpossumError::OpticGroup(
"internal node index not found".into(),
));
}
if !(self
.g
.externals(petgraph::Direction::Outgoing)
.any(|i| i == output_node))
{
return Err(OpossumError::OpticGroup(
"node to be mapped is not an output node of the group".into(),
));
}
self.output_port_map.insert(
external_name.to_string(),
(output_node, internal_name.to_string()),
);
Ok(())
}
pub fn incoming_edges(&self, idx: NodeIndex) -> LightResult {
let edges = self.g.edges_directed(idx, Direction::Incoming);
edges
.into_iter()
.map(|e| {
(
e.weight().target_port().to_owned(),
e.weight().data().cloned(),
)
})
.collect::<HashMap<String, Option<LightData>>>()
}
fn set_outgoing_edge_data(&mut self, idx: NodeIndex, port: String, data: Option<LightData>) {
let edges = self.g.edges_directed(idx, Direction::Outgoing);
let edge_ref = edges
.into_iter()
.filter(|idx| idx.weight().src_port() == port)
.last();
if let Some(edge_ref) = edge_ref {
let edge_idx = edge_ref.id();
let light = self.g.edge_weight_mut(edge_idx);
if let Some(light) = light {
light.set_data(data);
}
} // else outgoing edge not connected -> data dropped
}
pub fn analyze_group(
&mut self,
incoming_data: LightResult,
analyzer_type: &AnalyzerType,
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
) -> Result<LightResult> {
let g_clone = self.g.clone();
let mut group_srcs = g_clone.externals(Direction::Incoming);
let mut light_result = LightResult::default();
let sorted = toposort(&self.g, None).unwrap();
for idx in sorted {
// Check if node is group src node
let incoming_edges = if group_srcs.any(|gs| gs == idx) {
// get from incoming_data
let assigned_ports = self.input_port_map.iter().filter(|p| p.1 .0 == idx);
let mut incoming = LightResult::default();
for port in assigned_ports {
incoming.insert(
port.1 .1.to_owned(),
incoming_data.get(port.0).unwrap().clone(),
);
}
incoming
} else {
self.incoming_edges(idx)
};
let node = self.g.node_weight(idx).unwrap();
let outgoing_edges = node.borrow_mut().analyze(incoming_edges, analyzer_type)?;
let mut group_sinks = self.g.externals(Direction::Outgoing);
// Check if node is group sink node
if group_sinks.any(|gs| gs == idx) {
let assigned_ports = self.output_port_map.iter().filter(|p| p.1 .0 == idx);
for port in assigned_ports {
light_result.insert(
port.0.to_owned(),
outgoing_edges.get(&port.1 .1).unwrap().clone(),
);
}
} else {
for outgoing_edge in outgoing_edges {
self.set_outgoing_edge_data(idx, outgoing_edge.0, outgoing_edge.1)
}
}
}
}
impl Optical for NodeGroup {
fn node_type(&self) -> &str {
"group"
}
fn ports(&self) -> OpticPorts {
let mut ports = OpticPorts::new();
for p in self.input_port_map.iter() {
ports.add_input(p.0).unwrap();
}
for p in self.output_port_map.iter() {
ports.add_output(p.0).unwrap();
}
ports
}
fn analyze(
&mut self,
incoming_data: LightResult,
analyzer_type: &AnalyzerType,
) -> Result<LightResult> {
self.analyze_group(incoming_data, analyzer_type)
}
fn to_dot(&self, node_index: &str, name: &str, inverted: bool, _ports: &OpticPorts) -> String {
let inv_string = if inverted { "(inv)" } else { "" };
let mut dot_string = format!(
" subgraph i{} {{\n\tlabel=\"{}{}\"\n\tfontsize=15\n\tcluster=true\n\t",
node_index, name, inv_string
);
for node_idx in self.g.node_indices() {
let node = self.g.node_weight(node_idx).unwrap();
dot_string += &node
.borrow()
.to_dot(&format!("{}_i{}", node_index, node_idx.index()));
}
for edge in self.g.edge_indices() {
let end_nodes = self.g.edge_endpoints(edge).unwrap();
let light = self.g.edge_weight(edge).unwrap();
end_nodes.1.index(),
light.target_port()
fn node_color(&self) -> &str {
"yellow"
#[cfg(test)]
mod test {
use super::NodeGroup;
use crate::{
nodes::{BeamSplitter, Dummy},
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
optic_node::{OpticNode, Optical},
};
#[test]
fn new() {
let og = NodeGroup::new();
assert_eq!(og.g.node_count(), 0);
assert_eq!(og.g.edge_count(), 0);
assert!(og.input_port_map.is_empty());
assert!(og.output_port_map.is_empty());
}
#[test]
fn add_node() {
let mut og = NodeGroup::new();
let sub_node = OpticNode::new("test", Dummy);
og.add_node(sub_node);
assert_eq!(og.g.node_count(), 1);
}
#[test]
fn connect_nodes() {
let mut og = NodeGroup::new();
let sub_node1 = OpticNode::new("test1", Dummy);
let sn1_i = og.add_node(sub_node1);
let sub_node2 = OpticNode::new("test2", Dummy);
let sn2_i = og.add_node(sub_node2);
// wrong port names
assert!(og.connect_nodes(sn1_i, "wrong", sn2_i, "front").is_err());
assert_eq!(og.g.edge_count(), 0);
assert!(og.connect_nodes(sn1_i, "rear", sn2_i, "wrong").is_err());
assert_eq!(og.g.edge_count(), 0);
// wrong node index
assert!(og.connect_nodes(5.into(), "rear", sn2_i, "front").is_err());
assert_eq!(og.g.edge_count(), 0);
assert!(og.connect_nodes(sn1_i, "rear", 5.into(), "front").is_err());
assert_eq!(og.g.edge_count(), 0);
// correct usage
assert!(og.connect_nodes(sn1_i, "rear", sn2_i, "front").is_ok());
assert_eq!(og.g.edge_count(), 1);
}
#[test]
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
fn input_nodes() {
let mut og = NodeGroup::new();
let sub_node1 = OpticNode::new("test1", Dummy);
let sn1_i = og.add_node(sub_node1);
let sub_node1 = OpticNode::new("test2", Dummy);
let sn2_i = og.add_node(sub_node1);
let sub_node3 = OpticNode::new("test3", BeamSplitter::new(0.5));
let sn3_i = og.add_node(sub_node3);
og.connect_nodes(sn1_i, "rear", sn2_i, "front").unwrap();
og.connect_nodes(sn2_i, "rear", sn3_i, "input1").unwrap();
assert_eq!(og.input_nodes(),vec![0.into(),2.into()])
}
#[test]
fn output_nodes() {
let mut og = NodeGroup::new();
let sub_node1 = OpticNode::new("test1", Dummy);
let sn1_i = og.add_node(sub_node1);
let sub_node1 = OpticNode::new("test2", BeamSplitter::new(0.5));
let sn2_i = og.add_node(sub_node1);
let sub_node3 = OpticNode::new("test3", Dummy);
let sn3_i = og.add_node(sub_node3);
og.connect_nodes(sn1_i, "rear", sn2_i, "input1").unwrap();
og.connect_nodes(sn2_i, "out1_trans1_refl2", sn3_i, "front").unwrap();
assert_eq!(og.input_nodes(),vec![0.into(),1.into()])
}
#[test]
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
fn map_input_port() {
let mut og = NodeGroup::new();
let sub_node1 = OpticNode::new("test1", Dummy);
let sn1_i = og.add_node(sub_node1);
let sub_node2 = OpticNode::new("test2", Dummy);
let sn2_i = og.add_node(sub_node2);
og.connect_nodes(sn1_i, "rear", sn2_i, "front").unwrap();
// wrong port name
assert!(og.map_input_port(sn1_i, "wrong", "input").is_err());
assert!(og.input_port_map.is_empty());
// wrong node index
assert!(og.map_input_port(5.into(), "front", "input").is_err());
assert!(og.input_port_map.is_empty());
// map output port
assert!(og.map_input_port(sn2_i, "rear", "input").is_err());
assert!(og.input_port_map.is_empty());
// map internal node
assert!(og.map_input_port(sn2_i, "front", "input").is_err());
assert!(og.input_port_map.is_empty());
// correct usage
assert!(og.map_input_port(sn1_i, "front", "input").is_ok());
assert_eq!(og.input_port_map.len(), 1);
}
#[test]
fn map_output_port() {
let mut og = NodeGroup::new();
let sub_node1 = OpticNode::new("test1", Dummy);
let sn1_i = og.add_node(sub_node1);
let sub_node2 = OpticNode::new("test2", Dummy);
let sn2_i = og.add_node(sub_node2);
og.connect_nodes(sn1_i, "rear", sn2_i, "front").unwrap();
// wrong port name
assert!(og.map_output_port(sn2_i, "wrong", "output").is_err());
assert!(og.output_port_map.is_empty());
// wrong node index
assert!(og.map_output_port(5.into(), "rear", "output").is_err());
assert!(og.output_port_map.is_empty());
// map input port
assert!(og.map_output_port(sn1_i, "front", "output").is_err());
assert!(og.output_port_map.is_empty());
// map internal node
assert!(og.map_output_port(sn1_i, "rear", "output").is_err());
assert!(og.output_port_map.is_empty());
// correct usage
assert!(og.map_output_port(sn2_i, "rear", "output").is_ok());
assert_eq!(og.output_port_map.len(), 1);
}
#[test]
fn ports() {
let mut og = NodeGroup::new();
let sub_node1 = OpticNode::new("test1", Dummy);
let sn1_i = og.add_node(sub_node1);
let sub_node2 = OpticNode::new("test2", Dummy);
let sn2_i = og.add_node(sub_node2);
og.connect_nodes(sn1_i, "rear", sn2_i, "front").unwrap();
assert!(og.ports().inputs().is_empty());
assert!(og.ports().outputs().is_empty());
og.map_input_port(sn1_i, "front", "input").unwrap();
assert!(og.ports().inputs().contains(&("input".to_string())));
og.map_output_port(sn2_i, "rear", "output").unwrap();
assert!(og.ports().outputs().contains(&("output".to_string())));
}
}