Newer
Older
use crate::analyzer::AnalyzerType;
use crate::lightdata::LightData;
use crate::optic_node::{Dottable, LightResult};
use crate::{
optic_node::{OpticNode, Optical},
optic_ports::OpticPorts,
};
use petgraph::prelude::{DiGraph, EdgeIndex, NodeIndex};
type Result<T> = std::result::Result<T, OpossumError>;
#[derive(Default, Debug, Clone)]
/// A node that represents a group of other [`OpticNode`]s arranges in a subgraph.
///
/// All unconnected input and output ports of this subgraph form the ports of this [`NodeGroup`].
g: DiGraph<Rc<RefCell<OpticNode>>, Light>,
input_port_map: HashMap<String, (NodeIndex, String)>,
output_port_map: HashMap<String, (NodeIndex, String)>,
}
impl NodeGroup {
pub fn new() -> Self {
Self::default()
}
/// Add a given [`OpticNode`] to the (sub-)graph of this [`NodeGroup`].
///
/// This command just adds an [`OpticNode`] but does not connect it to existing nodes in the (sub-)graph. The given node is
/// consumed (owned) by the [`NodeGroup`].
pub fn add_node(&mut self, node: OpticNode) -> NodeIndex {
self.g.add_node(Rc::new(RefCell::new(node)))
}
/// Connect (already existing) nodes denoted by the respective `NodeIndex`.
///
/// Both node indices must exist. Otherwise an [`OpossumError::OpticScenery`] is returned. In addition, connections are
/// rejected and an [`OpossumError::OpticScenery`] is returned, if the graph would form a cycle (loop in the graph).
if let Some(source) = self.g.node_weight(src_node) {
if !source.borrow().ports().outputs().contains(&src_port.into()) {
return Err(OpossumError::OpticScenery(format!(
"source node {} does not have a port {}",
src_port
)));
}
} else {
return Err(OpossumError::OpticScenery(
"source node with given index does not exist".into(),
));
}
if let Some(target) = self.g.node_weight(target_node) {
if !target
.borrow()
.ports()
.inputs()
.contains(&target_port.into())
{
return Err(OpossumError::OpticScenery(format!(
"target node {} does not have a port {}",
target_port
)));
}
} else {
return Err(OpossumError::OpticScenery(
"target node with given index does not exist".into(),
));
}
if self.src_node_port_exists(src_node, src_port) {
return Err(OpossumError::OpticScenery(format!(
"src node with given port {} is already connected",
src_port
)));
if self.target_node_port_exists(src_node, src_port) {
return Err(OpossumError::OpticScenery(format!(
"target node with given port {} is already connected",
target_port
)));
let edge_index = self
.g
.add_edge(src_node, target_node, Light::new(src_port, target_port));
if is_cyclic_directed(&self.g) {
self.g.remove_edge(edge_index);
return Err(OpossumError::OpticScenery(
"connecting the given nodes would form a loop".into(),
));
fn src_node_port_exists(&self, src_node: NodeIndex, src_port: &str) -> bool {
self.g
.edges_directed(src_node, petgraph::Direction::Outgoing)
.any(|e| e.weight().src_port() == src_port)
}
fn target_node_port_exists(&self, target_node: NodeIndex, target_port: &str) -> bool {
self.g
.edges_directed(target_node, petgraph::Direction::Incoming)
.any(|e| e.weight().target_port() == target_port)
}
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
fn input_nodes(&self) -> Vec<NodeIndex> {
let mut input_nodes: Vec<NodeIndex> = Vec::default();
for node_idx in self.g.node_indices() {
let incoming_edges = self.g.edges_directed(node_idx, Direction::Incoming).count();
let input_ports = self
.g
.node_weight(node_idx)
.unwrap()
.borrow()
.ports()
.inputs()
.len();
if input_ports != incoming_edges {
input_nodes.push(node_idx);
}
}
input_nodes
}
fn output_nodes(&self) -> Vec<NodeIndex> {
let mut output_nodes: Vec<NodeIndex> = Vec::default();
for node_idx in self.g.node_indices() {
let outgoing_edges = self.g.edges_directed(node_idx, Direction::Outgoing).count();
let output_ports = self
.g
.node_weight(node_idx)
.unwrap()
.borrow()
.ports()
.outputs()
.len();
if output_ports != outgoing_edges {
output_nodes.push(node_idx);
}
}
output_nodes
}
pub fn map_input_port(
&mut self,
input_node: NodeIndex,
internal_name: &str,
external_name: &str,
) -> Result<()> {
if self.input_port_map.contains_key(external_name) {
return Err(OpossumError::OpticGroup(
"external input port name already assigned".into(),
));
}
if let Some(node) = self.g.node_weight(input_node) {
if !node
.borrow()
.ports()
.inputs()
.contains(&(internal_name.to_string()))
{
return Err(OpossumError::OpticGroup(
"internal input port name not found".into(),
));
}
} else {
return Err(OpossumError::OpticGroup(
"internal node index not found".into(),
));
}
if !self.input_nodes().contains(&input_node) {
return Err(OpossumError::OpticGroup(
"node to be mapped is not an input node of the group".into(),
));
}
let incoming_edge_connected = self
.g
.edges_directed(input_node, Direction::Incoming)
.map(|e| e.weight().target_port())
.any(|p| p == internal_name);
if incoming_edge_connected {
return Err(OpossumError::OpticGroup(
"port of input node is already internally connected".into(),
));
}
self.input_port_map.insert(
external_name.to_string(),
(input_node, internal_name.to_string()),
);
Ok(())
}
pub fn map_output_port(
&mut self,
output_node: NodeIndex,
internal_name: &str,
external_name: &str,
) -> Result<()> {
if self.output_port_map.contains_key(external_name) {
return Err(OpossumError::OpticGroup(
"external output port name already assigned".into(),
));
}
if let Some(node) = self.g.node_weight(output_node) {
if !node
.ports()
.outputs()
.contains(&(internal_name.to_string()))
{
return Err(OpossumError::OpticGroup(
"internal output port name not found".into(),
));
}
} else {
return Err(OpossumError::OpticGroup(
"internal node index not found".into(),
));
}
if !self.output_nodes().contains(&output_node) {
return Err(OpossumError::OpticGroup(
"node to be mapped is not an output node of the group".into(),
));
}
let outgoing_edge_connected = self
.g
.edges_directed(output_node, Direction::Outgoing)
.map(|e| e.weight().src_port())
.any(|p| p == internal_name);
if outgoing_edge_connected {
return Err(OpossumError::OpticGroup(
"port of output node is already internally connected".into(),
));
}
self.output_port_map.insert(
external_name.to_string(),
(output_node, internal_name.to_string()),
);
Ok(())
}
pub fn incoming_edges(&self, idx: NodeIndex) -> LightResult {
let edges = self.g.edges_directed(idx, Direction::Incoming);
edges
.into_iter()
.map(|e| {
(
e.weight().target_port().to_owned(),
e.weight().data().cloned(),
)
})
.collect::<HashMap<String, Option<LightData>>>()
}
fn set_outgoing_edge_data(&mut self, idx: NodeIndex, port: String, data: Option<LightData>) {
let edges = self.g.edges_directed(idx, Direction::Outgoing);
let edge_ref = edges
.into_iter()
.filter(|idx| idx.weight().src_port() == port)
.last();
if let Some(edge_ref) = edge_ref {
let edge_idx = edge_ref.id();
let light = self.g.edge_weight_mut(edge_idx);
if let Some(light) = light {
light.set_data(data);
}
} // else outgoing edge not connected -> data dropped
}
pub fn analyze_group(
&mut self,
incoming_data: LightResult,
analyzer_type: &AnalyzerType,
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
) -> Result<LightResult> {
let g_clone = self.g.clone();
let mut group_srcs = g_clone.externals(Direction::Incoming);
let mut light_result = LightResult::default();
let sorted = toposort(&self.g, None).unwrap();
for idx in sorted {
// Check if node is group src node
let incoming_edges = if group_srcs.any(|gs| gs == idx) {
// get from incoming_data
let assigned_ports = self.input_port_map.iter().filter(|p| p.1 .0 == idx);
let mut incoming = LightResult::default();
for port in assigned_ports {
incoming.insert(
port.1 .1.to_owned(),
incoming_data.get(port.0).unwrap().clone(),
);
}
incoming
} else {
self.incoming_edges(idx)
};
let node = self.g.node_weight(idx).unwrap();
let outgoing_edges = node.borrow_mut().analyze(incoming_edges, analyzer_type)?;
let mut group_sinks = self.g.externals(Direction::Outgoing);
// Check if node is group sink node
if group_sinks.any(|gs| gs == idx) {
let assigned_ports = self.output_port_map.iter().filter(|p| p.1 .0 == idx);
for port in assigned_ports {
light_result.insert(
port.0.to_owned(),
outgoing_edges.get(&port.1 .1).unwrap().clone(),
);
}
} else {
for outgoing_edge in outgoing_edges {
self.set_outgoing_edge_data(idx, outgoing_edge.0, outgoing_edge.1)
}
}
}
}
impl Optical for NodeGroup {
fn node_type(&self) -> &str {
"group"
}
fn ports(&self) -> OpticPorts {
let mut ports = OpticPorts::new();
for p in self.input_port_map.iter() {
ports.add_input(p.0).unwrap();
}
for p in self.output_port_map.iter() {
ports.add_output(p.0).unwrap();
}
ports
}
fn analyze(
&mut self,
incoming_data: LightResult,
analyzer_type: &AnalyzerType,
) -> Result<LightResult> {
self.analyze_group(incoming_data, analyzer_type)
}
fn to_dot(&self, node_index: &str, name: &str, inverted: bool, _ports: &OpticPorts) -> String {
let inv_string = if inverted { "(inv)" } else { "" };
let mut dot_string = format!(
" subgraph i{} {{\n\tlabel=\"{}{}\"\n\tfontsize=15\n\tcluster=true\n\t",
node_index, name, inv_string
);
for node_idx in self.g.node_indices() {
let node = self.g.node_weight(node_idx).unwrap();
dot_string += &node
.borrow()
.to_dot(&format!("{}_i{}", node_index, node_idx.index()));
}
for edge in self.g.edge_indices() {
let end_nodes = self.g.edge_endpoints(edge).unwrap();
let light = self.g.edge_weight(edge).unwrap();
end_nodes.1.index(),
light.target_port()
fn node_color(&self) -> &str {
"yellow"
#[cfg(test)]
mod test {
use super::NodeGroup;
use crate::{
nodes::{BeamSplitter, Dummy},
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
optic_node::{OpticNode, Optical},
};
#[test]
fn new() {
let og = NodeGroup::new();
assert_eq!(og.g.node_count(), 0);
assert_eq!(og.g.edge_count(), 0);
assert!(og.input_port_map.is_empty());
assert!(og.output_port_map.is_empty());
}
#[test]
fn add_node() {
let mut og = NodeGroup::new();
let sub_node = OpticNode::new("test", Dummy);
og.add_node(sub_node);
assert_eq!(og.g.node_count(), 1);
}
#[test]
fn connect_nodes() {
let mut og = NodeGroup::new();
let sub_node1 = OpticNode::new("test1", Dummy);
let sn1_i = og.add_node(sub_node1);
let sub_node2 = OpticNode::new("test2", Dummy);
let sn2_i = og.add_node(sub_node2);
// wrong port names
assert!(og.connect_nodes(sn1_i, "wrong", sn2_i, "front").is_err());
assert_eq!(og.g.edge_count(), 0);
assert!(og.connect_nodes(sn1_i, "rear", sn2_i, "wrong").is_err());
assert_eq!(og.g.edge_count(), 0);
// wrong node index
assert!(og.connect_nodes(5.into(), "rear", sn2_i, "front").is_err());
assert_eq!(og.g.edge_count(), 0);
assert!(og.connect_nodes(sn1_i, "rear", 5.into(), "front").is_err());
assert_eq!(og.g.edge_count(), 0);
// correct usage
assert!(og.connect_nodes(sn1_i, "rear", sn2_i, "front").is_ok());
assert_eq!(og.g.edge_count(), 1);
}
#[test]
fn input_nodes() {
let mut og = NodeGroup::new();
let sub_node1 = OpticNode::new("test1", Dummy);
let sn1_i = og.add_node(sub_node1);
let sub_node1 = OpticNode::new("test2", Dummy);
let sn2_i = og.add_node(sub_node1);
let sub_node3 = OpticNode::new("test3", BeamSplitter::new(0.5));
let sn3_i = og.add_node(sub_node3);
og.connect_nodes(sn1_i, "rear", sn2_i, "front").unwrap();
og.connect_nodes(sn2_i, "rear", sn3_i, "input1").unwrap();
assert_eq!(og.input_nodes(), vec![0.into(), 2.into()])
}
#[test]
fn output_nodes() {
let mut og = NodeGroup::new();
let sub_node1 = OpticNode::new("test1", Dummy);
let sn1_i = og.add_node(sub_node1);
let sub_node1 = OpticNode::new("test2", BeamSplitter::new(0.5));
let sn2_i = og.add_node(sub_node1);
let sub_node3 = OpticNode::new("test3", Dummy);
let sn3_i = og.add_node(sub_node3);
og.connect_nodes(sn1_i, "rear", sn2_i, "input1").unwrap();
og.connect_nodes(sn2_i, "out1_trans1_refl2", sn3_i, "front")
.unwrap();
assert_eq!(og.input_nodes(), vec![0.into(), 1.into()])
fn map_input_port() {
let mut og = NodeGroup::new();
let sub_node1 = OpticNode::new("test1", Dummy);
let sn1_i = og.add_node(sub_node1);
let sub_node2 = OpticNode::new("test2", Dummy);
let sn2_i = og.add_node(sub_node2);
og.connect_nodes(sn1_i, "rear", sn2_i, "front").unwrap();
// wrong port name
assert!(og.map_input_port(sn1_i, "wrong", "input").is_err());
assert!(og.input_port_map.is_empty());
// wrong node index
assert!(og.map_input_port(5.into(), "front", "input").is_err());
assert!(og.input_port_map.is_empty());
// map output port
assert!(og.map_input_port(sn2_i, "rear", "input").is_err());
assert!(og.input_port_map.is_empty());
// map internal node
assert!(og.map_input_port(sn2_i, "front", "input").is_err());
assert!(og.input_port_map.is_empty());
// correct usage
assert!(og.map_input_port(sn1_i, "front", "input").is_ok());
assert_eq!(og.input_port_map.len(), 1);
}
#[test]
fn map_input_port_half_connected_nodes() {
let mut og = NodeGroup::new();
let sub_node1 = OpticNode::new("test1", Dummy);
let sn1_i = og.add_node(sub_node1);
let sub_node2 = OpticNode::new("test2", BeamSplitter::default());
let sn2_i = og.add_node(sub_node2);
og.connect_nodes(sn1_i, "rear", sn2_i, "input1").unwrap();
// node port already internally connected
assert!(og.map_input_port(sn2_i, "input1", "bs_input").is_err());
// correct usage
assert!(og.map_input_port(sn1_i, "front", "input").is_ok());
assert!(og.map_input_port(sn2_i, "input2", "bs_input").is_ok());
assert_eq!(og.input_port_map.len(), 2);
}
#[test]
fn map_output_port() {
let mut og = NodeGroup::new();
let sub_node1 = OpticNode::new("test1", Dummy);
let sn1_i = og.add_node(sub_node1);
let sub_node2 = OpticNode::new("test2", Dummy);
let sn2_i = og.add_node(sub_node2);
og.connect_nodes(sn1_i, "rear", sn2_i, "front").unwrap();
// wrong port name
assert!(og.map_output_port(sn2_i, "wrong", "output").is_err());
assert!(og.output_port_map.is_empty());
// wrong node index
assert!(og.map_output_port(5.into(), "rear", "output").is_err());
assert!(og.output_port_map.is_empty());
// map input port
assert!(og.map_output_port(sn1_i, "front", "output").is_err());
assert!(og.output_port_map.is_empty());
// map internal node
assert!(og.map_output_port(sn1_i, "rear", "output").is_err());
assert!(og.output_port_map.is_empty());
// correct usage
assert!(og.map_output_port(sn2_i, "rear", "output").is_ok());
assert_eq!(og.output_port_map.len(), 1);
}
#[test]
fn map_output_port_half_connected_nodes() {
let mut og = NodeGroup::new();
let sub_node1 = OpticNode::new("test1", BeamSplitter::default());
let sn1_i = og.add_node(sub_node1);
let sub_node2 = OpticNode::new("test2", Dummy);
let sn2_i = og.add_node(sub_node2);
og.connect_nodes(sn1_i, "out1_trans1_refl2", sn2_i, "front")
.unwrap();
// node port already internally connected
assert!(og
.map_output_port(sn1_i, "out1_trans1_refl2", "bs_output")
.is_err());
// correct usage
assert!(og
.map_output_port(sn1_i, "out2_trans2_refl1", "bs_output")
.is_ok());
assert!(og.map_output_port(sn2_i, "rear", "output").is_ok());
assert_eq!(og.output_port_map.len(), 2);
}
#[test]
fn ports() {
let mut og = NodeGroup::new();
let sub_node1 = OpticNode::new("test1", Dummy);
let sn1_i = og.add_node(sub_node1);
let sub_node2 = OpticNode::new("test2", Dummy);
let sn2_i = og.add_node(sub_node2);
og.connect_nodes(sn1_i, "rear", sn2_i, "front").unwrap();
assert!(og.ports().inputs().is_empty());
assert!(og.ports().outputs().is_empty());
og.map_input_port(sn1_i, "front", "input").unwrap();
assert!(og.ports().inputs().contains(&("input".to_string())));
og.map_output_port(sn2_i, "rear", "output").unwrap();
assert!(og.ports().outputs().contains(&("output".to_string())));
}
}