Newer
Older
"""Fit a linear function to the data
:param S: data x values
:param V: data y values
:param xerr: data x uncertainties
:param yerr: data y uncertainties
:param p0: initial values of parameters
:param odr: Fit method to use: True means ortogonal distance regression (ODR), False means ordinary least square fit, None (default) uses ODR only if either xerr or yerr is not None
:param extend: fraction by which the returned fit trace extends beyond the first/last data point
"""
result = fit_function(lambda s, v0, m: v0+m*s, S, V, p0=(np.mean(V), np.mean(np.diff(V)/np.diff(S))), **kwargs)
param, param_error, function, [X, _] = result
return param, param_error, function, [X, function(X, *param)]
"""Fit a gaussian function to the data
:param S: data x values
:param V: data y values
:param xerr: data x uncertainties
:param yerr: data y uncertainties
:param p0: initial values of parameters
:param odr: Fit method to use: True means ortogonal distance regression (ODR), False means ordinary least square fit, None (default) uses ODR only if either xerr or yerr is not None
:param extend: fraction by which the returned fit trace extends beyond the first/last data point
"""
gauss = lambda s, v0, vp, s0, sigma: v0+vp*np.exp(-0.5*((s-s0)/sigma)**2)
v0 = np.min(V)
vp = np.max(V)-v0
s0 = S[np.argmax(V)]
sigma = np.sqrt(np.abs(np.sum((S - s0) ** 2 * V) / np.sum(V)))
result = fit_function(gauss, S, V, p0=(v0, vp, s0, sigma), **kwargs)
param, param_error, function, [X, _] = result
param[3] = np.abs(param[3]) # return the positive sigma (could use bounds instead, but that's more likely to fail)
return param, param_error, function, [X, function(X, *param)]
def fit_lorenzian(S, V, **kwargs):
"""Fit a lorenzian function to the data
:param S: data x values
:param V: data y values
:param xerr: data x uncertainties
:param yerr: data y uncertainties
:param p0: initial values of parameters
:param odr: Fit method to use: True means ortogonal distance regression (ODR), False means ordinary least square fit, None (default) uses ODR only if either xerr or yerr is not None
:param extend: fraction by which the returned fit trace extends beyond the first/last data point
"""
lorenzian = lambda s, v0, vp, s0, gamma: v0 + vp/(1+((s-s0)/gamma)**2)
v0 = np.min(V)
vp = np.max(V)-v0
s0 = S[np.argmax(V)]
sigma = np.sqrt(np.abs(np.sum((S - s0) ** 2 * (V-v0)) / np.sum(V-v0)))
result = fit_function(lorenzian, S, V, p0=(v0, vp, s0, sigma), **kwargs)
param, param_error, function, [X, _] = result
param[3] = np.abs(param[3]) # return the positive sigma (could use bounds instead, but that's more likely to fail)
return param, param_error, function, [X, function(X, *param)]
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def fit_double_lorenzian(S, V, *, s0=None, dry_run=False, **kwargs):
"""Fit a lorenzian function to the data
:param S: data x values
:param V: data y values
:param xerr: data x uncertainties
:param yerr: data y uncertainties
:param s0: initial peak positions
:param p0: initial values of parameters
:param odr: Fit method to use: True means ortogonal distance regression (ODR), False means ordinary least square fit, None (default) uses ODR only if either xerr or yerr is not None
:param extend: fraction by which the returned fit trace extends beyond the first/last data point
"""
lorenzian = lambda s, v0, vp, s0, gamma, vp2, s02, gamma2: v0 + vp/(1+((s-s0)/gamma)**2) + vp2/(1+((s-s02)/gamma2)**2)
# ! for double peak fit, initial conditions are very important
v0 = np.min(V)
vp = np.max(V)-v0
if s0 is None:
s0 = S[np.argmax(V)]
sigma = np.sqrt(np.abs(np.sum((S - s0) ** 2 * (V-v0)) / np.sum(V-v0)))/10
s0 = [s0-3*sigma, s0+3*sigma]
sigma0 = np.sqrt(np.abs(np.sum((S - s0[0]) ** 2 * (V-v0)) / np.sum(V-v0)))/10
sigma1 = np.sqrt(np.abs(np.sum((S - s0[1]) ** 2 * (V-v0)) / np.sum(V-v0)))/10
p0=(v0, vp, s0[0], sigma0, vp, s0[1], sigma1)
if dry_run:
mi, ma = min(S), max(S)
X = np.linspace(mi, ma, 1000)
return p0, (0,0,0,0), 0, [X, lorenzian(X, *p0)]
result = fit_function(lorenzian, S, V, p0=p0, **kwargs)
param, param_error, function, [X, _] = result
param[3] = np.abs(param[3]) # return the positive sigma (could use bounds instead, but that's more likely to fail)
return param, param_error, function, [X, function(X, *param)]
def fit_function(function, x, y, *, xerr=None, yerr=None, p0=None, odr=None, extend=0):
"""Fit a function to the data
:param function: fit function(x, *param)
:param x: data x values
:param y: data y values
:param xerr: data x uncertainties
:param yerr: data y uncertainties
:param p0: initial values of parameters
:param odr: Fit method to use: True means ortogonal distance regression (ODR), False means ordinary least square fit, None (default) uses ODR only if either xerr or yerr is not None
:param extend: fraction by which the returned fit trace extends beyond the first/last data point
if odr is None:
odr = xerr is not None or yerr is not None
if odr:
# orthogonal distance regression
data = scipy.odr.RealData(x, y, sx=xerr, sy=yerr)
model = scipy.odr.Model(lambda beta, x: function(x, *beta))
odr = scipy.odr.ODR(data, model, p0)
# if not odr: odr.set_job(fit_type=2) # ordinary least-squares
output = odr.run()
param, param_error = output.beta, output.sd_beta
else:
# non-linear least squares
param, cov = scipy.optimize.curve_fit(function, x, y, p0)
param_error = np.sqrt(np.abs(cov.diagonal()))
mi, ma = min(x), max(x)
X = np.linspace(mi - (ma-mi)*extend, ma + (ma-mi)*extend, 1000)
return param, param_error, function, [X, function(X, *param)]
def fit_exponential(S, V, **kwargs):
"""Fit an exponential function to the data
:param S: data x values
:param V: data y values
:param xerr: data x uncertainties
:param yerr: data y uncertainties
:param p0: initial values of parameters
:param odr: Fit method to use: True means ortogonal distance regression (ODR), False means ordinary least square fit, None (default) uses ODR only if either xerr or yerr is not None
:param extend: fraction by which the returned fit trace extends beyond the first/last data point
"""
exponential = lambda s, v0, vp, s0: v0 + vp*np.exp(s/s0)
v0 = np.min(V)
vp = np.max(V)-v0
s0 = 1
return fit_function(exponential, S, V, p0=(v0, vp, s0), **kwargs)