Newer
Older
import scipy
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
# Setup pint
SI = pint.UnitRegistry()
SI.setup_matplotlib()
SI.default_format = '~P'
# Colors
# https://arxiv.org/abs/2107.02270
petroff_colors = ["#3f90da", "#ffa90e", "#bd1f01", "#94a4a2", "#832db6", "#a96b59", "#e76300", "#b9ac70", "#717581", "#92dadd"]
cmap_petroff_10 = mpl.colors.ListedColormap(petroff_colors, 'Petroff 10')
mpl.rcParams['axes.prop_cycle'] = mpl.cycler(color=petroff_colors)
cmap_petroff_gradient = mpl.colors.LinearSegmentedColormap.from_list('Petroff gradient', [petroff_colors[i] for i in (9,0,4,2,6,1)])
cmap_petroff_gradient.set_under(petroff_colors[3])
cmap_petroff_gradient.set_over(petroff_colors[7])
mpl.rcParams['image.cmap'] = cmap_petroff_gradient
cmap_petroff_bipolar = mpl.colors.LinearSegmentedColormap.from_list('Petroff bipolar', [petroff_colors[i] for i in (2,6,1,3,9,0,4)])
cmap_petroff_bipolar.set_under(petroff_colors[5])
cmap_petroff_bipolar.set_over(petroff_colors[8])
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
def add_vline(axes, r, color='k', text=None, label=None, order=None, lw=1, text_top=True, text_vertical=True, zorder=-100, **kwargs):
for i, a in enumerate(axes):
if a is None: continue
if order:
kwargs['ls'] = (0, [11,2]+[1,2]*order)
kwargs['alpha'] = 1/order
a.axvline(r, c=color, label=label if a.get_xlim()[0] <= r <= a.get_xlim()[1] else None, zorder=5, lw=lw, **kwargs)
if text:
a.text(r, .99 if text_top else 0.01, f' {text} ', fontsize='small', c=color, zorder=zorder,
alpha=1/order if order else 1, transform=a.get_xaxis_text1_transform(0)[0],
rotation=90 if text_vertical else 0, clip_on=True, ha='right' if text_vertical else 'left',
va='top' if text_top else 'bottom')
def to_half_intervall(q):
"""Returns the corresponding fractional tune value in the half interval [0;0.5)
"""
q = q-np.floor(q)
q = np.where(q < 0, q+1, q)
return np.min([q, 1-q], axis=0)
def add_resonance_vlines(axes, max_order, color='r'):
res = set()
for m in range(1, max_order+1):
for n in range(m//2+1):
r = n/m
if r in res: continue
res.add(r)
add_vline(axes, to_half_intervall(r), color, text=f'{n}/{m} resonance' if m > 1 else None, lw=3/max(1, m-2)**.5,
alpha=1/max(1, m-2), text_vertical=True, text_top=True)
# Libera tbt data
##################
def turn_or_time_range(time, turn_range=None, time_range=None):
if turn_range is not None and time_range is not None:
raise ValueError('Parameters turn_range or time_range are mutually exclusive')
if time_range is not None:
return irng(time, *time_range)
if turn_range is None:
return slice(None, None)
return turn_range
def plot_tbt(ax, libera_data, over_time=True, turn_range=None, time_range=None):
"""Plot turn-by-turn data
"""
assert isinstance(libera_data, LiberaTBTData), f'Expected LiberaTBTData but got {type(libera_data)}'
turn_range = turn_or_time_range(libera_data.t, turn_range, time_range)
t, s = libera_data.t[turn_range], libera_data.s[turn_range]
ax2 = ax.twinx()
lf, = ax.plot(*avg(t[:-1] if over_time else np.arange(0, len(s)-1), 1e-6/np.diff(t), n=500), c=cmap_petroff_10(3))
ax.set(ylabel='$f_\\mathrm{rev}$ / MHz', ylim=(0, 1))
ax.grid(color='lightgray')
ls, = ax2.plot(*avg(t if over_time else np.arange(0, len(s)), s, n=500), c=cmap_petroff_10(1))
ax2.set(ylabel='Pickup sum / a.u.', ylim=(0,1e8))
ax2.legend([lf,ls], ['Revolution frequency', 'Pickup sum signal'], loc='center right', fontsize='small')
def plot_tune_spectrum(ax, libera_data, xy, turn_range=None, time_range=None, tune_range=None, fit=False, **kwargs):
"""Plot a tune spectrum based on turn-by-turn data
:param ax: Axis to plot onto
:param libera_data: Instance of LiberaTBTData class
:param xy: either 'x' or 'y'
:param turn_range: tuple of (start_turn, stop_turn) for range to plot
:param turn_range: tuple of (start_time, stop_time) in seconds for range to plot
"""
assert isinstance(libera_data, LiberaTBTData), f'Expected LiberaTBTData but got {type(libera_data)}'
turn_range = turn_or_time_range(libera_data.t, turn_range, time_range)
tbt_data = getattr(libera_data, xy)[turn_range]
fft = np.fft.rfft(tbt_data)
freq, mag, phase = np.fft.rfftfreq(len(tbt_data), d=1), np.abs(fft), np.angle(fft)
if tune_range is not None:
mask = irng(freq, *tune_range)
freq, mag, phase = freq[mask], mag[mask], phase[mask]
else:
tune_range = (0, 0.5)
ax.plot(freq, mag, **kwargs)
ax.set(xlim=tune_range, xlabel=f'Tune $q_{xy}$',
ylabel='a.u.')
if fit:
try:
fitr = (fit if callable(fit) else fit_lorenzian)(freq, mag)
q, w = fitr[0][2], fitr[0][3]
if q<0 or q>0.5 or w > 0.01:
raise RuntimeError('Fit failed')
except RuntimeError:
print('Warning: fit failed')
else:
q = SI.Measurement(fitr[0][2], (fitr[1][2]**2+fitr[0][3]**2+fitr[1][3]**2)**0.5, '') # conservative estimate of error including width of peak
ax.plot(*fitr[-1], '--', label=f'Fit $q_{xy}={q:~L}$')
def plot_tune_spectrogram(ax, libera_data, xy, nperseg=2**12, noverlap=None, ninterpol=4, smoothing=0, over_time=True, colorbar=False,
turn_range=None, time_range=None, tune_range=None):
"""Plot a tune spectrogram based on turn-by-turn data
:param ax: Axis to plot onto
:param libera_data: Instance of LiberaTBTData class
:param xy: either 'x' or 'y'
:param turn_range: tuple of (start_turn, stop_turn) for range to plot
:param turn_range: tuple of (start_time, stop_time) in seconds for range to plot
"""
noverlap = (nperseg - nperseg//ninterpol) if noverlap is None else noverlap
assert isinstance(libera_data, LiberaTBTData), f'Expected LiberaTBTData but got {type(libera_data)}'
turn_range = turn_or_time_range(libera_data.t, turn_range, time_range)
tbt_data = getattr(libera_data, xy)[turn_range]
tune, turn, value = scipy.signal.stft(tbt_data, fs=1, nperseg=nperseg, noverlap=noverlap, window='boxcar', boundary=None, padded=False)
time = libera_data.t[turn_range][turn.astype(int)]
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
mag = np.abs(value)
#mag[0,:] = 0 # supress DC
if tune_range is not None:
mask = irng(tune, *tune_range)
tune, mag = tune[mask], mag[mask, :]
else:
tune_range = (0, 0.5)
if over_time:
cm = ax.pcolormesh(time, tune, mag, shading='nearest',
cmap='gist_heat_r',
vmin=np.percentile(mag, 0.5), vmax=np.percentile(mag, 99.5),
#cmap='plasma_r',
#norm=mpl.colors.LogNorm(),
#norm=mpl.colors.LogNorm(vmin=np.nanmean(mag)/5, vmax=np.nanmean(mag)*1000),
#vmin=np.nanmean(mag), vmax=np.nanmean(mag)+np.nanstd(mag),
)
else:
cm = ax.imshow(mag, extent=(turn[0], turn[-1], tune[-1], tune[0]), aspect='auto', rasterized=True,
cmap='plasma_r',
vmin=np.percentile(mag, 1), vmax=np.percentile(mag, 99),
)
if colorbar: fig.colorbar(cm, label='FFT magnitude', ax=ax)
ax.set(ylim=tune_range, ylabel=f'Tune $q_{xy}$') # or $1-q_{xy}$')
return time if over_time else turn, tune, mag