Skip to content
Snippets Groups Projects
optic_node.rs 14 KiB
Newer Older
use crate::analyzer::AnalyzerType;
use crate::error::OpossumError;
use crate::lightdata::LightData;
use crate::optic_ports::OpticPorts;
use core::fmt::Debug;
use std::collections::HashMap;
pub type LightResult = HashMap<String, Option<LightData>>;
type Result<T> = std::result::Result<T, OpossumError>;
/// An [`OpticNode`] is the basic struct representing an optical component.
pub struct OpticNode {
    name: String,
    node: Box<dyn OpticComponent>,
    ports: OpticPorts,
    /// Creates a new [`OpticNode`]. The concrete type of the component must be given while using the `new` function.
    /// The node type ist a struct implementing the [`Optical`] trait. Since the size of the node type is not known at compile time it must be added as `Box<nodetype>`.
Udo Eisenbarth's avatar
Udo Eisenbarth committed
    /// ```rust
    /// use opossum::optic_node::OpticNode;
    /// use opossum::nodes::Dummy;
    /// let node=OpticNode::new("My node", Dummy::default());
    pub fn new<T: OpticComponent + 'static>(name: &str, node_type: T) -> Self {
        let ports = node_type.ports();
        Self {
            name: name.into(),
            node: Box::new(node_type),
    }
    /// Sets the name of this [`OpticNode`].
    pub fn set_name(&mut self, name: String) {
        self.name = name;
    }
    /// Returns a reference to the name of this [`OpticNode`].
    pub fn name(&self) -> &str {
        self.name.as_ref()
    }
    /// Returns a string representation of the [`OpticNode`] in `graphviz` format including port visualization.
    /// This function is normally called by the top-level `to_dot`function within `OpticScenery`.
    pub fn to_dot(&self, node_index: &str, parent_identifier: String) -> Result<String> {
        self.node.to_dot(
            node_index,
            &self.name,
            self.inverted(),
            &self.node.ports(),
            parent_identifier,
        )
    /// Returns the concrete node type as string representation.
    pub fn node_type(&self) -> &str {
        self.node.node_type()
    }
    /// Mark the [`OpticNode`] as inverted.
    /// This means that the node is used in "reverse" direction. All output port become input parts and vice versa.
    pub fn set_inverted(&mut self, inverted: bool) {
        self.ports.set_inverted(inverted);
        self.node.set_inverted(inverted);
    }
    /// Returns if the [`OpticNode`] is used in reversed direction.
    pub fn inverted(&self) -> bool {
    /// Returns a reference to the [`OpticPorts`] of this [`OpticNode`].
    pub fn ports(&self) -> &OpticPorts {
        &self.ports
    }
    pub fn analyze(
        &mut self,
        incoming_data: LightResult,
        analyzer_type: &AnalyzerType,
    ) -> Result<LightResult> {
        self.node.analyze(incoming_data, analyzer_type)
    pub fn export_data(&self) {
        let file_name = self.name.to_owned() + ".svg";
        self.node.export_data(&file_name);
    }
    pub fn node(&self) -> &Box<(dyn OpticComponent + 'static)> {
    pub fn is_detector(&self) -> bool {
        self.node.is_detector()
    }
impl Debug for OpticNode {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{} - {:?}", self.name, self.node)

/// This trait must be implemented by all concrete optical components.
pub trait Optical {
    /// Return the type of the optical component (lens, filter, ...). The default implementation returns "undefined".
    fn node_type(&self) -> &str {
        "undefined"
    /// Return the available (input & output) ports of this element.
    fn ports(&self) -> OpticPorts {
        OpticPorts::default()
    }
    /// Perform an analysis of this element. The type of analysis is given by an [`AnalyzerType`].
Udo Eisenbarth's avatar
Udo Eisenbarth committed
    ///
    /// This function is normally only called by [`OpticScenery::analyze()`](crate::optic_scenery::OpticScenery::analyze()).
    ///
    /// # Errors
    ///
    /// This function will return an error if internal element-specific errors occur and the analysis cannot be performed.
    fn analyze(
        &mut self,
        _incoming_data: LightResult,
        _analyzer_type: &AnalyzerType,
    ) -> Result<LightResult> {
        print!("{}: No analyze function defined.", self.node_type());
        Ok(LightResult::default())
    fn export_data(&self, _file_name: &str) {
        println!("no export_data function implemented for nodetype <{}>", self.node_type())
    fn is_detector(&self) -> bool {
        false
    }
    fn set_inverted(&mut self, _inverted: bool) {}
/// This trait deals with the translation of the OpticScenery-graph structure to the dot-file format which is needed to visualize the graphs
pub trait Dottable {
    /// Return component type specific code in 'dot' format for `graphviz` visualization.
    fn to_dot(
        &self,
        node_index: &str,
        name: &str,
        inverted: bool,
        ports: &OpticPorts,
        mut parent_identifier: String,
    ) -> Result<String> {
        let inv_string = if inverted { " (inv)" } else { "" };
        let node_name = format!("{}{}", name, inv_string);
        parent_identifier = if parent_identifier == "" {
            format!("i{}", node_index)
        } else {
            format!("{}_i{}", &parent_identifier, node_index)
        };
        let mut dot_str = format!("\t{} [\n\t\tshape=plaintext\n", &parent_identifier);
        let mut indent_level = 2;
        dot_str.push_str(&self.add_html_like_labels(
            &node_name,
            &mut indent_level,
            ports,
            inverted,
        ));
    /// creates a table-cell wrapper around an "inner" string
    fn add_table_cell_container(
        &self,
        inner_str: &str,
        border_flag: bool,
        indent_level: &mut i32,
    ) -> String {
Udo Eisenbarth's avatar
Udo Eisenbarth committed
        if inner_str.is_empty() {
            format!(
                "{}<TD BORDER=\"{}\">{}</TD>\n",
                "\t".repeat(*indent_level as usize),
                border_flag,
                inner_str
            )
        } else {
            format!(
                "{}<TD BORDER=\"{}\">{}{}{}</TD>\n",
                "\t".repeat(*indent_level as usize),
                border_flag,
                inner_str,
                "\t".repeat((*indent_level + 1) as usize),
                "\t".repeat(*indent_level as usize)
            )

    /// create the dot-string of each port
    fn create_port_cell_str(
        &self,
        port_name: &str,
        input_flag: bool,
        port_index: usize,
        indent_level: &mut i32,
    ) -> String {
        // inputs marked as green, outputs as blue
        let color_str = if input_flag {
            "\"lightgreen\""
        } else {
            "\"lightblue\""
        };
        // part of the tooltip that describes if the port is an input or output
        let in_out_str = if input_flag {
            "Input port"
        } else {
            "Output port"
        };
        format!(
            "{}<TD PORT=\"{}\" BORDER=\"1\" BGCOLOR={} HREF=\"\" TOOLTIP=\"{} {}: {}\">{}</TD>\n",
            "\t".repeat(*indent_level as usize),
            port_name,
            color_str,
            in_out_str,
            port_index,
            port_name,
            port_index
        )
    }
    /// create the dot-string that describes the ports, including their row/table/cell wrappers
    fn create_port_cells_str(
        &self,
        input_flag: bool,
        indent_level: &mut i32,
        indent_incr: i32,
        ports: &OpticPorts,
    ) -> String {
        let mut ports = if input_flag {
            ports.inputs()
        } else {
            ports.outputs()
        };
        ports.sort();
        let mut dot_str = self.create_html_like_container("row", indent_level, true, 1);
        dot_str.push_str(&self.create_html_like_container("cell", indent_level, true, 1));
        dot_str.push_str(&self.create_html_like_container("table", indent_level, true, 1));
        dot_str.push_str(&self.create_html_like_container("row", indent_level, true, 1));

        dot_str.push_str(&self.add_table_cell_container("", false, indent_level));

        let mut port_index = 1;
        for port in ports {
            dot_str.push_str(&self.create_port_cell_str(
                &port,
                input_flag,
                port_index,
                indent_level,
            ));
            dot_str.push_str(&self.add_table_cell_container("", false, indent_level));
            port_index += 1;
        *indent_level -= 1;

        dot_str.push_str(&self.create_html_like_container("row", indent_level, false, -1));
        dot_str.push_str(&self.create_html_like_container("table", indent_level, false, -1));
        dot_str.push_str(&self.create_html_like_container("cell", indent_level, false, -1));
        dot_str.push_str(&self.create_html_like_container("row", indent_level, false, indent_incr));
    /// Returns the color of the node.
    fn node_color(&self) -> &str {
        "lightgray"
    fn create_main_node_row_str(&self, node_name: &str, indent_level: &mut i32) -> String {
        let mut dot_str = self.create_html_like_container("row", indent_level, true, 1);
y.zobus's avatar
y.zobus committed
        dot_str.push_str(&format!("{}<TD BORDER=\"1\" BGCOLOR=\"{}\" ALIGN=\"CENTER\" WIDTH=\"80\" CELLPADDING=\"10\" HEIGHT=\"80\" STYLE=\"ROUNDED\">{}</TD>\n", "\t".repeat(*indent_level as usize), self.node_color(), node_name));
        *indent_level -= 1;
        dot_str.push_str(&self.create_html_like_container("row", indent_level, false, 0));
    /// starts or ends an html-like container
    fn create_html_like_container(
        &self,
        container_str: &str,
        indent_level: &mut i32,
        start_flag: bool,
        indent_incr: i32,
    ) -> String {
        let container = match container_str {
            "row" => {
                if start_flag {
                    "<TR>"
                } else {
                    "</TR>"
                }
            }
            "cell" => {
                if start_flag {
                    "<TD BORDER=\"0\">"
                } else {
                    "</TD>"
                }
            }
            "table" => {
                if start_flag {
                    "<TABLE BORDER=\"0\" CELLBORDER=\"0\" CELLSPACING=\"0\" CELLPADDING=\"0\" ALIGN=\"CENTER\">"
                } else {
                    "</TABLE>"
                }
            }
            _ => "Invalid container string!",
        };

        let new_str = "\t".repeat(*indent_level as usize) + container + "\n";
        *indent_level += indent_incr;

        new_str
    }

    /// creates the node label defined by html-like strings
    fn add_html_like_labels(
        &self,
        node_name: &str,
        indent_level: &mut i32,
        ports: &OpticPorts,
        inverted: bool,
    ) -> String {
        let mut dot_str = "\t\tlabel=<\n".to_owned();

        // Start Table environment
        dot_str.push_str(&self.create_html_like_container("table", indent_level, true, 1));

        // add row containing the input ports
Udo Eisenbarth's avatar
Udo Eisenbarth committed
        dot_str.push_str(&self.create_port_cells_str(!inverted, indent_level, 0, ports));

        // add row containing the node main
        dot_str.push_str(&self.create_main_node_row_str(node_name, indent_level));

        // add row containing the output ports
        dot_str.push_str(&self.create_port_cells_str(inverted, indent_level, -1, ports));

        //end table environment
        dot_str.push_str(&self.create_html_like_container("table", indent_level, false, -1));

        //end node-shape description
        dot_str.push_str(&format!("{}>];\n", "\t".repeat(*indent_level as usize)));
        dot_str
    }
pub trait OpticComponent: Optical + Dottable + Debug + Any + 'static {
    fn upcast_any_ref(self: &'_ Self) -> &'_ dyn Any;
}
impl<T: Optical + Dottable + Debug + Any + 'static> OpticComponent for T {
    fn upcast_any_ref(self: &'_ Self) -> &'_ dyn Any {
    pub fn downcast_ref<T: 'static>(self: &'_ Self) -> Option<&'_ T> {
        self.upcast_any_ref().downcast_ref::<T>()
    }
}
#[cfg(test)]
mod test {
    use super::OpticNode;
    use crate::nodes::{Detector, Dummy};
    #[test]
    fn new() {
Udo Eisenbarth's avatar
Udo Eisenbarth committed
        let node = OpticNode::new("Test", Dummy::default());
        assert_eq!(node.name, "Test");
        assert_eq!(node.inverted(), false);
Udo Eisenbarth's avatar
Udo Eisenbarth committed
        let mut node = OpticNode::new("Test", Dummy::default());
        node.set_name("Test2".into());
        assert_eq!(node.name, "Test2")
Udo Eisenbarth's avatar
Udo Eisenbarth committed
        let node = OpticNode::new("Test", Dummy::default());
        assert_eq!(node.name(), "Test")
    #[test]
    fn set_inverted() {
Udo Eisenbarth's avatar
Udo Eisenbarth committed
        let mut node = OpticNode::new("Test", Dummy::default());
        node.set_inverted(true);
        assert_eq!(node.inverted(), true)
    }
    #[test]
    fn inverted() {
Udo Eisenbarth's avatar
Udo Eisenbarth committed
        let mut node = OpticNode::new("Test", Dummy::default());
        node.set_inverted(true);
        assert_eq!(node.inverted(), true)
    }
    #[test]
Udo Eisenbarth's avatar
Udo Eisenbarth committed
        let node = OpticNode::new("Test", Dummy::default());
        assert_eq!(node.is_detector(), false);
        let node = OpticNode::new("Test", Detector::default());
        assert_eq!(node.is_detector(), true)
    }
    #[test]
    fn to_dot() {
Udo Eisenbarth's avatar
Udo Eisenbarth committed
        let node = OpticNode::new("Test", Dummy::default());
        assert_eq!(
            node.to_dot("i0", "".to_owned()).unwrap(),
            "  i0 [label=\"Test\"]\n".to_owned()
        )
    fn to_dot_inverted() {
Udo Eisenbarth's avatar
Udo Eisenbarth committed
        let mut node = OpticNode::new("Test", Dummy::default());
        node.set_inverted(true);
        assert_eq!(
            node.to_dot("i0", "".to_owned()).unwrap(),
            "  i0 [label=\"Test(inv)\"]\n".to_owned()
        )
    fn node_type() {
Udo Eisenbarth's avatar
Udo Eisenbarth committed
        let node = OpticNode::new("Test", Dummy::default());
        assert_eq!(node.node_type(), "dummy");
    }