Newer
Older
use serde_derive::{Deserialize, Serialize};
use serde_json::json;
use uom::si::length::nanometer;
use crate::properties::{Properties, Property, Proptype};
use crate::{
error::OpossumError,
optic_ports::OpticPorts,
};
use std::collections::HashMap;
use std::fmt::Debug;
use std::path::{Path, PathBuf};
type Result<T> = std::result::Result<T, OpossumError>;
#[non_exhaustive]
#[derive(Debug, Default, PartialEq, Clone, Copy, Serialize, Deserialize)]
pub enum SpectrometerType {
/// an ideal energy meter
#[default]
IdealSpectrometer,
/// Ocean Optics HR2000
HR2000,
}
/// (ideal) spectrometer
///
/// It normally measures / displays the spectrum of the incoming light.
///
/// ## Optical Ports
/// - Inputs
/// - `in1`
/// - Outputs
/// - `out1`
///
/// During analysis, the output port contains a replica of the input port similar to a [`Dummy`](crate::nodes::Dummy) node. This way,
/// different dectector nodes can be "stacked" or used somewhere within the optical setup.
pub struct Spectrometer {
light_data: Option<LightData>,
fn create_default_props() -> Properties {
let mut props = Properties::default();
props.set("name", "spectrometer".into());
props.set(
"spectrometer type",
SpectrometerType::IdealSpectrometer.into(),
);
props
}
impl Default for Spectrometer {
fn default() -> Self {
Self {
light_data: Default::default(),
props: create_default_props(),
}
}
}
impl Spectrometer {
/// Creates a new [`Spectrometer`] of the given [`SpectrometerType`].
pub fn new(spectrometer_type: SpectrometerType) -> Self {
let mut props = create_default_props();
props.set("spectrometer type", spectrometer_type.into());
}
}
/// Returns the meter type of this [`Spectrometer`].
pub fn spectrometer_type(&self) -> SpectrometerType {
let meter_type = self.props.get("spectrometer type").unwrap().prop.clone();
if let Proptype::SpectrometerType(meter_type) = meter_type {
meter_type
} else {
panic!("wrong data format")
}
pub fn set_spectrometer_type(&mut self, meter_type: SpectrometerType) {
self.props.set("spectrometer type", meter_type.into());
fn set_name(&mut self, name: &str) {
self.props.set("name", name.into());
}
fn node_type(&self) -> &str {
"spectrometer"
}
fn ports(&self) -> OpticPorts {
let mut ports = OpticPorts::new();
ports.add_input("in1").unwrap();
ports.add_output("out1").unwrap();
ports
}
fn analyze(
&mut self,
incoming_data: LightResult,
_analyzer_type: &crate::analyzer::AnalyzerType,
) -> Result<LightResult> {
if let Some(data) = incoming_data.get("in1") {
self.light_data = data.clone();
Ok(HashMap::from([("out1".into(), data.clone())]))
} else {
Ok(HashMap::from([("out2".into(), None)]))
}
}
fn export_data(&self, report_dir: &Path) {
let mut file_path = PathBuf::from(report_dir);
file_path.push(format!("spectrum_{}.svg", self.name()));
data.export(&file_path)
}
}
fn is_detector(&self) -> bool {
true
}
fn properties(&self) -> &Properties {
&self.props
}
fn set_property(&mut self, name: &str, prop: Property) -> Result<()> {
if self.props.set(name, prop).is_none() {
Err(OpossumError::Other("property not defined".into()))
} else {
Ok(())
}
}
fn report(&self) -> serde_json::Value {
let data = &self.light_data;
let mut energy_data = serde_json::Value::Null;
if let Some(LightData::Energy(e)) = data {

Udo Eisenbarth
committed
energy_data = e.spectrum.to_json();
}
json!({"type": self.node_type(),
"name": self.name(),
"energy": energy_data})
}
}
impl Debug for Spectrometer {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match &self.light_data {
Some(data) => match data {
LightData::Energy(data_energy) => {
let spectrum_range = data_energy.spectrum.range();
write!(
f,
"Spectrum {:.3} - {:.3} nm (Type: {:?})",
spectrum_range.start.get::<nanometer>(),
spectrum_range.end.get::<nanometer>(),
self.spectrometer_type()
)
}
_ => write!(f, "no spectrum data to display"),
},
None => write!(f, "no data"),
}
}
}
impl Dottable for Spectrometer {
fn node_color(&self) -> &str {
use crate::{analyzer::AnalyzerType, lightdata::DataEnergy, spectrum::create_he_ne_spectrum};
use super::*;
#[test]
fn new() {
let meter = Spectrometer::new(SpectrometerType::IdealSpectrometer);
assert!(meter.light_data.is_none());
assert_eq!(
meter.spectrometer_type(),
SpectrometerType::IdealSpectrometer
);
}
#[test]
fn default() {
let meter = Spectrometer::default();
assert!(meter.light_data.is_none());
assert_eq!(
meter.spectrometer_type(),
SpectrometerType::IdealSpectrometer
);
assert_eq!(meter.node_type(), "spectrometer");
assert_eq!(meter.is_detector(), true);
assert_eq!(meter.node_color(), "lightseagreen");
}
#[test]
fn meter_type() {
let meter = Spectrometer::new(SpectrometerType::IdealSpectrometer);
assert_eq!(
meter.spectrometer_type(),
SpectrometerType::IdealSpectrometer
);
}
#[test]
fn set_meter_type() {
let mut meter = Spectrometer::new(SpectrometerType::IdealSpectrometer);
meter.set_spectrometer_type(SpectrometerType::HR2000);
assert_eq!(meter.spectrometer_type(), SpectrometerType::HR2000);
}
#[test]
fn ports() {
let meter = Spectrometer::default();
let ports = meter.ports();
assert_eq!(ports.inputs(), vec!["in1"]);
assert_eq!(ports.outputs(), vec!["out1"]);
}
#[test]
fn analyze() {
let mut meter = Spectrometer::default();
let mut input = LightResult::default();
input.insert(
"in1".into(),
Some(LightData::Energy(DataEnergy {
spectrum: create_he_ne_spectrum(1.0),
})),
);
let result = meter.analyze(input, &AnalyzerType::Energy);