Newer
Older
use crate::analyzer::AnalyzerType;
use crate::lightdata::LightData;
use crate::optic_ports::OpticPorts;
use std::any::Any;
pub type LightResult = HashMap<String, Option<LightData>>;
type Result<T> = std::result::Result<T, OpossumError>;
/// An [`OpticNode`] is the basic struct representing an optical component.
pub struct OpticNode {
name: String,
node: Box<dyn OpticComponent>,
/// Creates a new [`OpticNode`]. The concrete type of the component must be given while using the `new` function.
/// The node type ist a struct implementing the [`Optical`] trait. Since the size of the node type is not known at compile time it must be added as `Box<nodetype>`.
/// use opossum::optic_node::OpticNode;
/// let node=OpticNode::new("My node", Dummy::default());
pub fn new<T: OpticComponent + 'static>(name: &str, node_type: T) -> Self {
let ports = node_type.ports();
}
/// Sets the name of this [`OpticNode`].
pub fn set_name(&mut self, name: String) {
self.name = name;
}
/// Returns a reference to the name of this [`OpticNode`].
pub fn name(&self) -> &str {
self.name.as_ref()
}
/// Returns a string representation of the [`OpticNode`] in `graphviz` format including port visualization.
/// This function is normally called by the top-level `to_dot`function within `OpticScenery`.
pub fn to_dot(&self, node_index: &str, parent_identifier: String, rankdir: &str) -> Result<String> {
self.node.to_dot(
node_index,
&self.name,
self.inverted(),
&self.node.ports(),
parent_identifier,
/// Returns the concrete node type as string representation.
/// Mark the [`OpticNode`] as inverted.
/// This means that the node is used in "reverse" direction. All output port become input parts and vice versa.
pub fn set_inverted(&mut self, inverted: bool) {
self.ports.set_inverted(inverted);
self.node.set_inverted(inverted);
}
/// Returns if the [`OpticNode`] is used in reversed direction.
pub fn inverted(&self) -> bool {
self.ports.inverted()
/// Returns a reference to the [`OpticPorts`] of this [`OpticNode`].
pub fn ports(&self) -> &OpticPorts {
&self.ports
}
pub fn analyze(
&mut self,
incoming_data: LightResult,
analyzer_type: &AnalyzerType,
) -> Result<LightResult> {
self.node.analyze(incoming_data, analyzer_type)
let file_name = self.name.to_owned() + ".svg";
self.node.export_data(&file_name);
}
pub fn node(&self) -> &Box<dyn OpticComponent> {
&self.node
}
pub fn is_detector(&self) -> bool {
self.node.is_detector()
}
impl Debug for OpticNode {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{} - {:?}", self.name, self.node)
/// This trait must be implemented by all concrete optical components.
pub trait Optical {
/// Return the type of the optical component (lens, filter, ...). The default implementation returns "undefined".
fn node_type(&self) -> &str {
"undefined"
/// Return the available (input & output) ports of this element.
fn ports(&self) -> OpticPorts {
OpticPorts::default()
}
/// Perform an analysis of this element. The type of analysis is given by an [`AnalyzerType`].
/// This function is normally only called by [`OpticScenery::analyze()`](crate::optic_scenery::OpticScenery::analyze()).
///
/// # Errors
///
/// This function will return an error if internal element-specific errors occur and the analysis cannot be performed.
fn analyze(
&mut self,
_incoming_data: LightResult,
_analyzer_type: &AnalyzerType,
) -> Result<LightResult> {
print!("{}: No analyze function defined.", self.node_type());
Ok(LightResult::default())
fn export_data(&self, _file_name: &str) {
println!("no export_data function implemented for nodetype <{}>", self.node_type())
fn is_detector(&self) -> bool {
false
}
fn set_inverted(&mut self, _inverted: bool) {}
/// This trait deals with the translation of the OpticScenery-graph structure to the dot-file format which is needed to visualize the graphs
/// Return component type specific code in 'dot' format for `graphviz` visualization.
fn to_dot(
&self,
node_index: &str,
name: &str,
inverted: bool,
ports: &OpticPorts,
mut parent_identifier: String,
let inv_string = if inverted { " (inv)" } else { "" };
let node_name = format!("{}{}", name, inv_string);
format!("i{}", node_index)
} else {
format!("{}_i{}", &parent_identifier, node_index)
};
let mut dot_str = format!("\t{} [\n\t\tshape=plaintext\nrankdir=\"{}\"\n", &parent_identifier, rankdir);
dot_str.push_str(&self.add_html_like_labels(
&node_name,
&mut indent_level,
ports,
inverted,
Ok(dot_str)
/// creates a table-cell wrapper around an "inner" string
fn add_table_cell_container(
&self,
inner_str: &str,
border_flag: bool,
indent_level: &mut i32,
) -> String {
format!(
"{}<TD BORDER=\"{}\">{}</TD>\n",
"\t".repeat(*indent_level as usize),
border_flag,
inner_str
)
} else {
format!(
"{}<TD BORDER=\"{}\">{}{}{}</TD>\n",
"\t".repeat(*indent_level as usize),
border_flag,
inner_str,
"\t".repeat((*indent_level + 1) as usize),
"\t".repeat(*indent_level as usize)
)
/// create the dot-string of each port
fn create_port_cell_str(
&self,
port_name: &str,
input_flag: bool,
port_index: usize,
indent_level: &mut i32,
) -> String {
// inputs marked as green, outputs as blue
let color_str = if input_flag {
"\"lightgreen\""
} else {
"\"lightblue\""
};
// part of the tooltip that describes if the port is an input or output
let in_out_str = if input_flag {
"Input port"
} else {
"Output port"
};
format!(
"{}<TD HEIGHT=\"16\" WIDTH=\"16\" PORT=\"{}\" BORDER=\"1\" BGCOLOR={} HREF=\"\" TOOLTIP=\"{} {}: {}\">{}</TD>\n",
"\t".repeat(*indent_level as usize),
port_name,
color_str,
in_out_str,
port_index,
port_name,
port_index
)
}
/// create the dot-string that describes the ports, including their row/table/cell wrappers
fn create_port_cells_str(
&self,
input_flag: bool,
indent_level: &mut i32,
indent_incr: i32,
ports: &OpticPorts,
) -> String {
let mut ports = if input_flag {
ports.inputs()
} else {
ports.outputs()
};
let mut dot_str = self.create_html_like_container("row", indent_level, true, 1);
dot_str.push_str(&self.create_html_like_container("cell", indent_level, true, 1));
dot_str.push_str(&self.create_html_like_container("table", indent_level, true, 1));
dot_str.push_str(&self.create_html_like_container("row", indent_level, true, 1));
dot_str.push_str(&self.add_table_cell_container("", false, indent_level));
let mut port_index = 1;
for port in ports {
dot_str.push_str(&self.create_port_cell_str(
&port,
input_flag,
port_index,
indent_level,
));
dot_str.push_str(&self.add_table_cell_container("", false, indent_level));
port_index += 1;
dot_str.push_str(&self.create_html_like_container("row", indent_level, false, -1));
dot_str.push_str(&self.create_html_like_container("table", indent_level, false, -1));
dot_str.push_str(&self.create_html_like_container("cell", indent_level, false, -1));
dot_str.push_str(&self.create_html_like_container("row", indent_level, false, indent_incr));
/// Returns the color of the node.
fn node_color(&self) -> &str {
"lightgray"
fn create_main_node_row_str(&self, node_name: &str, indent_level: &mut i32) -> String {
let mut dot_str = self.create_html_like_container("row", indent_level, true, 1);
dot_str.push_str(&format!("{}<TD BORDER=\"1\" BGCOLOR=\"{}\" ALIGN=\"CENTER\" WIDTH=\"80\" CELLPADDING=\"10\" HEIGHT=\"80\" STYLE=\"ROUNDED\">{}</TD>\n", "\t".repeat(*indent_level as usize), self.node_color(), node_name));
dot_str.push_str(&self.create_html_like_container("row", indent_level, false, 0));
/// starts or ends an html-like container
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
fn create_html_like_container(
&self,
container_str: &str,
indent_level: &mut i32,
start_flag: bool,
indent_incr: i32,
) -> String {
let container = match container_str {
"row" => {
if start_flag {
"<TR>"
} else {
"</TR>"
}
}
"cell" => {
if start_flag {
"<TD BORDER=\"0\">"
} else {
"</TD>"
}
}
"table" => {
if start_flag {
"<TABLE BORDER=\"0\" CELLBORDER=\"0\" CELLSPACING=\"0\" CELLPADDING=\"0\" ALIGN=\"CENTER\">"
} else {
"</TABLE>"
}
}
_ => "Invalid container string!",
};
let new_str = "\t".repeat(*indent_level as usize) + container + "\n";
*indent_level += indent_incr;
new_str
}
/// creates the node label defined by html-like strings
fn add_html_like_labels(
&self,
node_name: &str,
indent_level: &mut i32,
ports: &OpticPorts,
inverted: bool,
let mut dot_str = "\t\tlabel=<\n".to_owned();
// Start Table environment
dot_str.push_str(&self.create_html_like_container("table", indent_level, true, 1));
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
let mut inputs = ports.inputs();
let mut outputs = ports.outputs();
let mut in_port_count = 0;
let mut out_port_count = 0;
let num_input_ports = inputs.len();
let num_output_ports = outputs.len();
let max_port_num = if num_input_ports <=num_output_ports{
num_output_ports
} else{
num_input_ports
};
let row_col_span = (max_port_num*2+1);
let node_cell_size = if max_port_num > 2{
16*(max_port_num*2+1)
}
else{
80
};
inputs.sort();
outputs.sort();
let num_cells = (max_port_num+1)*2+1;
for row_num in 0..num_cells{
dot_str.push_str(&self.create_html_like_container("row", indent_level, true, 1));
for col_num in 0..num_cells{
if in_port_count < num_input_ports && rankdir == "LR" && row_num != 0 && row_num % 2 == 0 && col_num == 0 {
dot_str.push_str(&self.create_port_cell_str(
&inputs[in_port_count],
true,
in_port_count+1,
indent_level,
));
in_port_count+=1;
}
else if out_port_count < num_output_ports && rankdir == "LR" && row_num != 0 && row_num % 2 == 0 && col_num == num_cells-1{
dot_str.push_str(&self.create_port_cell_str(
&outputs[out_port_count],
false,
out_port_count+1,
indent_level,
));
out_port_count+=1;
}
else if in_port_count < num_input_ports && rankdir == "TB" && col_num != 0 && col_num % 2 == 0 && row_num == 0 {
dot_str.push_str(&self.create_port_cell_str(
&inputs[in_port_count],
true,
in_port_count+1,
indent_level,
));
in_port_count+=1;
}
else if out_port_count < num_output_ports && rankdir == "TB" && col_num != 0 && col_num % 2 == 0 && row_num == num_cells-1{
dot_str.push_str(&self.create_port_cell_str(
&outputs[out_port_count],
false,
out_port_count+1,
indent_level,
));
out_port_count+=1;
}
else if row_num == 1 && col_num == 1{
dot_str.push_str(&format!("{}<TD BORDER=\"1\" ROWSPAN=\"{}\" COLSPAN=\"{}\" BGCOLOR=\"{}\" ALIGN=\"CENTER\" WIDTH=\"{}\" CELLPADDING=\"10\" HEIGHT=\"80\" STYLE=\"ROUNDED\">{}</TD>\n", "\t".repeat(*indent_level as usize), row_col_span, row_col_span, self.node_color(), node_cell_size, node_name));
}
else if row_num >= 1 && row_num <row_col_span+1 && col_num >= 1 && col_num <row_col_span+1{
();
}
else if num_output_ports <= 1 && rankdir == "LR" && col_num == 0 && row_num % 2 == 1 {
dot_str.push_str("<TD ALIGN=\"CENTER\" HEIGHT=\"32\" WIDTH=\"16\" BORDER=\"1\" ></TD>\n")
}
else if num_output_ports <= 1 && rankdir == "TB" && row_num == 0 && col_num % 2 == 1 {
dot_str.push_str("<TD ALIGN=\"CENTER\" HEIGHT=\"16\" WIDTH=\"32\" BORDER=\"1\" ></TD>\n")
}
else if num_output_ports <= 1 && rankdir == "LR" && col_num == num_cells-1 && row_num % 2 == 1 {
dot_str.push_str("<TD ALIGN=\"CENTER\" HEIGHT=\"32\" WIDTH=\"16\" BORDER=\"1\" ></TD>\n")
}
else if num_output_ports <= 1 && rankdir == "TB" && row_num == num_cells-1 && col_num % 2 == 1{
dot_str.push_str("<TD ALIGN=\"CENTER\" HEIGHT=\"16\" WIDTH=\"32\" BORDER=\"1\" ></TD>\n")
}
else{
dot_str.push_str("<TD ALIGN=\"CENTER\" HEIGHT=\"16\" WIDTH=\"16\" BORDER=\"1\" ></TD>\n")
}
}
dot_str.push_str(&self.create_html_like_container("row", indent_level, false, -1));
}
// // add row containing the input ports
// dot_str.push_str(&self.create_port_cells_str(!inverted, indent_level, 0, ports));
// // add row containing the node main
// dot_str.push_str(&self.create_main_node_row_str(node_name, indent_level));
// // add row containing the output ports
// dot_str.push_str(&self.create_port_cells_str(inverted, indent_level, -1, ports));
//end table environment
dot_str.push_str(&self.create_html_like_container("table", indent_level, false, -1));
//end node-shape description
dot_str.push_str(&format!("{}>];\n", "\t".repeat(*indent_level as usize)));
pub trait OpticComponent: Optical + Dottable + Debug + Any + 'static {
}
impl<T: Optical + Dottable + Debug + Any + 'static> OpticComponent for T {
#[inline]
self
}
}
impl dyn OpticComponent + 'static {
#[inline]
pub fn downcast_ref<T: 'static>(&'_ self) -> Option<&'_ T> {
self.upcast_any_ref().downcast_ref::<T>()
}
}
#[cfg(test)]
mod test {
use super::OpticNode;
let node = OpticNode::new("Test", Dummy::default());
assert_eq!(node.name, "Test");
assert_eq!(node.inverted(), false);
let mut node = OpticNode::new("Test", Dummy::default());
assert_eq!(node.name, "Test2")
let node = OpticNode::new("Test", Dummy::default());
assert_eq!(node.name(), "Test")
let mut node = OpticNode::new("Test", Dummy::default());
assert_eq!(node.inverted(), true)
}
#[test]
fn inverted() {
let mut node = OpticNode::new("Test", Dummy::default());
node.set_inverted(true);
assert_eq!(node.inverted(), true)
}
#[test]
let node = OpticNode::new("Test", Dummy::default());
assert_eq!(node.is_detector(), false);
let node = OpticNode::new("Test", Detector::default());
assert_eq!(node.is_detector(), true)
}
#[test]
let node = OpticNode::new("Test", Dummy::default());
node.to_dot("i0", "".to_owned(), "TB").unwrap(),
let mut node = OpticNode::new("Test", Dummy::default());
node.to_dot("i0", "".to_owned(), "TB").unwrap(),
" i0 [label=\"Test(inv)\"]\n".to_owned()
)
let node = OpticNode::new("Test", Dummy::default());
assert_eq!(node.node_type(), "dummy");
}