Newer
Older
def add_vline(axes, r, color='k', text=None, label=None, order=None, lw=1, text_top=True, text_vertical=True, zorder=-100, **kwargs):
for i, a in enumerate(axes):
if a is None: continue
if order:
kwargs['ls'] = (0, [11,2]+[1,2]*order)
kwargs['alpha'] = 1/order
a.axvline(r, c=color, label=label if a.get_xlim()[0] <= r <= a.get_xlim()[1] else None, zorder=zorder, lw=lw, **kwargs)
if text:
a.text(r, .99 if text_top else 0.01, f' {text} ', fontsize='small', c=color, zorder=zorder,
alpha=1/order if order else 1, transform=a.get_xaxis_text1_transform(0)[0],
rotation=90 if text_vertical else 0, clip_on=True, ha='right' if text_vertical else 'left',
va='top' if text_top else 'bottom')
def to_half_intervall(q):
"""Returns the corresponding fractional tune value in the half interval [0;0.5)
"""
q = q-np.floor(q)
q = np.where(q < 0, q+1, q)
return np.min([q, 1-q], axis=0)
def add_resonance_vlines(axes, max_order, color='r', zorder=100):
low, high = int(min([min(a.get_xlim()) for a in axes])), int(max([max(a.get_xlim()) for a in axes])+1)
res = set()
for m in range(1, max_order+1):
for n in range(m//2+1):
r = n/m
if r in res: continue
res.add(r)
for h in range(low, high):
for s in (+1, -1):
add_vline(axes, h+s*to_half_intervall(r), color, text=f'{n}/{m} resonance' if m > 1 else None, lw=3/max(1, m-2)**.5,
alpha=1/max(1, m-2), text_vertical=True, text_top=True, zorder=zorder)
def subplot_shared_labels(axes, xlabel=None, ylabel=None, clear='auto'):
:param axes: 2D array of axes from subplots (pass squeeze=False to plt.subplots if required)
:param xlabel: the shared xlabel
:param ylabel: the shared ylabel
:param clear: if 'auto' clears duplicate labels; if true clears any existing labels; if false do not clear any labels
axes = np.array(axes)
for r in reversed(range(axes.shape[0])):
if clear is True:
axes[r,c].set(xlabel=None, ylabel=None)
elif clear == 'auto':
if r < axes.shape[0]-1 and axes[r,c].get_shared_x_axes().joined(axes[r,c], axes[-1,c]):
axes[r,c].set(xlabel=None)
if c > 0 and axes[r,c].get_shared_y_axes().joined(axes[r,c], axes[r,0]):
axes[r,c].set(ylabel=None)
if xlabel is not None and (r == axes.shape[0]-1 or not axes[r,c].get_shared_x_axes().joined(axes[r,c], axes[-1,c])):
if ylabel is not None and (c == 0 or not axes[r,c].get_shared_y_axes().joined(axes[r,c], axes[r,0])):
axes[r,c].set(ylabel=ylabel)
"""Adds a diagonal grid to the given axes
:param ax: the axes
:param kwargs: optional arguments passed to ax.axline
"""
for k, v in dict(color='lightgray',lw=1,zorder=-100).items():
kwargs.setdefault(k, v)
xlim, ylim = ax.get_xlim(), ax.get_ylim()
xtick, ytick = ax.get_xticks(), ax.get_yticks()
for x in xtick:
if xlim[0] <= x <= xlim[1]:
ax.axline((x, ylim[0]), slope=1, **kwargs)
for y in ytick:
if ylim[0] <= y <= ylim[1]:
ax.axline((xlim[0], y), slope=1, **kwargs)
ax.set(xlim=xlim, ylim=ylim)
def fiberplot(ax, datasets, *, labels=[None, None], vertical=True):
"""Create a fiberplot with multiple datasets of x and y data
x is plotted on the horizontal (vertical) axis
y determines the height (width) of the fiberplot
position of each dataset determines the fiberplot position on the vertical (horizontal) axis
label can be used to compare 2 categories where the fiberplot is split into two
:param datasets: 2D array of datasets [(position, x, y), ...] or dict with two levels {label: {position: (x,y), ...}, ...}
"""
if type(datasets) is dict:
labels = list(datasets.keys())
datasets = [[(p, *v) for p, v in dataset.items()] for dataset in datasets.values()]
yticks = list({p for dataset in datasets for p, *_ in dataset})
dy = np.min(np.diff(sorted(yticks)))/2
for c, dataset in enumerate(datasets):
color = next(ax._get_lines.prop_cycler)['color']
for i, (p, x, y, *_) in enumerate(dataset):
v = dy*(y-np.min(y))/np.max(y)
plot_function = ax.fill_betweenx if vertical else ax.fill_between
plot_function(x, p - v*(1-c%2), p + v*(c%2 if len(datasets)>1 else 1),
color=color, lw=0, label=labels[c] if i == 0 else None)
if vertical:
ax.set(xticks=yticks)
else:
ax.set(yticks=yticks)
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
class SpecialMultipleLocator(mpl.ticker.MaxNLocator):
def __init__(self, fixed_multiples, n=5, minor_n=None):
"""Create a locator that locks to fixed_multiples with about n ticks
For ranges smaller than the smallest fixed_multiple, the default MaxNLocator is used
For ranges larger than the largest fixed_multiple, a multiple of the later is used
If minor_n is given with same length as fixed_multiples, the ticks are subdivided by the corresponding number
"""
super().__init__(n)
self.fixed_multiples = fixed_multiples
self.n = n
self.minor_n = minor_n
def _raw_ticks(self, vmin, vmax):
if vmax - vmin < self.n*self.fixed_multiples[0]:
return super()._raw_ticks(vmin, vmax)
for step in self.fixed_multiples:
if (vmax - vmin)/step <= self.n:
break
while (vmax - vmin)/step > self.n:
step += self.fixed_multiples[-1]
if self.minor_n is not None:
if step in self.fixed_multiples:
step /= self.minor_n[self.fixed_multiples.index(step)]
else:
step /= self.minor_n[-1]
return np.arange(int(vmin/step)*step, vmax+step, step)
class DegreeLocator(SpecialMultipleLocator):
"""A plot tick locator for angles in degree
"""
def __init__(self, kind='major'):
super().__init__((5, 15, 30, 45, 60, 90, 120, 180, 360), 5, None if kind=='major' else (
(5, 3, 3, 3, 4, 3, 4, 4, 4)))
class RadiansLocator(SpecialMultipleLocator):
"""A plot tick locator for angles in radiant
"""
def __init__(self, kind='major'):
super().__init__(list(np.deg2rad((5, 15, 30, 45, 60, 90, 120, 180, 360))), 5, None if kind=='major' else (
(5, 3, 3, 3, 4, 3, 4, 4, 4)))
class RadiansFormatter(mpl.ticker.Formatter):
"""A plot tick formatter for angles in radiant
"""
def __call__(self, x, pos=None):
if x == 0:
return '0'
s = '-' if x < 0 else ''
x = abs(x)
if x == np.pi:
return f'${s}\\pi$'
for n in (2,3,4,6,8,12):
m = round(x/(np.pi/n))
if abs(x - m*np.pi/n) < 1e-10 and m/n != m//n:
if m == 1: m = ''
return f'${s}{m}\\pi/{n}$'
return f'${x/np.pi:g}\\pi$'
yaxis.set_major_locator(DegreeLocator('major'))
yaxis.set_minor_locator(DegreeLocator('minor'))
def format_axis_radians(yaxis):
yaxis.set_major_locator(RadiansLocator('major'))
yaxis.set_minor_locator(RadiansLocator('minor'))
yaxis.set_major_formatter(RadiansFormatter())
def add_scale(ax, scale, text=None, *, vertical=False, size=0.01, padding=0.1, loc='auto', color='k', fontsize='x-small'):
"""Make a scale or yardstick patch"""
if loc == 'auto': loc = 'upper left' if vertical else 'lower right'
w, h = scale, size
w_trans, h_trans = ax.transData, ax.transAxes
if vertical: # swap dimensions
w, h = h, w
w_trans, h_trans = h_trans, w_trans
aux = mpl.offsetbox.AuxTransformBox(mpl.transforms.blended_transform_factory(w_trans, h_trans))
aux.add_artist(plt.Rectangle((0,0), w, h, fc=color))
if text:
if vertical:
aux.add_artist(plt.Text(2*w, h/2, text, color=color, ha='left', va='center', rotation='vertical', fontsize=fontsize))
else:
aux.add_artist(plt.Text(w/2, 1.5*h, text, color=color, va='bottom', ha='center', fontsize=fontsize))
ab = mpl.offsetbox.AnchoredOffsetbox(loc, borderpad=padding, zorder=100, frameon=False)
ab.set_child(aux)
ax.add_artist(ab)
def v(swap_xy, x, y):
return (y, x) if swap_xy else (x, y)
def smooth_plot(ax, x, y, smoothing=None, swap_xy=False, **kwargs):
r = ax.plot(*v(swap_xy, x, *smooth(y, n=smoothing)), **kwargs)
add_scale(ax, np.mean(np.diff(x))*smoothing, vertical=swap_xy)
kwargs.update(lw=1, alpha=0.1, label=None, zorder=-1, color=r[0].get_color())
ax.plot(*v(swap_xy, x, y), **kwargs)
# Libera tbt data
##################
def turn_or_time_range(time, turn_range=None, time_range=None):
if turn_range is not None and time_range is not None:
raise ValueError('Parameters turn_range or time_range are mutually exclusive')
if time_range is not None:
return irng(time, *time_range)
if turn_range is None:
return slice(None, None)
return slice(*turn_range)
def plot_tbt(ax, libera_data, what='fsxy', *, over_time=True, turn_range=None, time_range=None, averaging=500, show_avg_std=True, show_avg_extrema=True, **kwargs):
:param libera_data: instance of LiberaTBTData
:param what: signals to plot, any combination of 'f' (revolution frequency), 's' (sum signal), 'x' and/or 'y' (position)
:param over_time: if True, plot data as function of time rather than turn
:param turn_range: (start, stop) tuple of turns to plot
:param time_range: (start, stop) tuple of time in s to plot
:param averaging: number of consecutive turns to average over
:param show_avg_std: if True, plot the band of standard deviation around the averaged data
:param show_avg_std: if True, plot the band of min-to-max around the averaged data
"""
assert isinstance(libera_data, LiberaTBTData), f'Expected LiberaTBTData but got {type(libera_data)}'
axlabels = dict(f='$f_\\mathrm{rev}$ / kHz', s='Pickup sum / a.u.', x='Position / mm', y='Position / mm')
turn_range = turn_or_time_range(libera_data.t, turn_range, time_range)
t = libera_data.t[turn_range]
x = t if over_time else np.arange(0, len(t))
axes = {} # label: ax
limits = {} # ax: Bbox
ls, labels = [], []
for i, w in enumerate(what):
if axlabels[w] in axes:
a = axes[axlabels[w]]
else:
a = ax.twinx() if i > 0 else ax
if i > 0: a.spines.right.set_position(("axes", 0.9+0.1*len(axes)))
a.set(ylabel=axlabels[w], xlabel='Time / s' if over_time else 'Turn')
limits[a] = mpl.transforms.Bbox([[0,0],[0,0]])
v = 1e-3/np.diff(t) # to kHz
else:
v = getattr(libera_data, w)[turn_range]
args = dict(**kwargs)
if 'c' not in args and 'color' not in args:
args['c'] = dict(f=cmap_petroff_10(1), s=cmap_petroff_10(3), x=cmap_petroff_10(0), y=cmap_petroff_10(2))[w]
xx, vv = avg(x[:len(v)], v, n=averaging)
l, = a.plot(xx, vv, **args)
ls.append(l)
labels.append(dict(f='Revolution frequency', s='Pickup sum signal', x='X position', y='Y position')[w])
limits[a].update_from_data_xy(np.vstack(l.get_data()).T, ignore=limits[a].width==limits[a].height==0)
if averaging > 1 and show_avg_std:
_, ve = avg(x[:len(v)], v, n=averaging, function=np.std)
a.fill_between(xx, vv-ve, vv+ve, color=l.get_color(), alpha=0.4, zorder=-1, lw=0)
if averaging > 1 and show_avg_extrema:
_, vmi = avg(x[:len(v)], v, n=averaging, function=np.min)
_, vma = avg(x[:len(v)], v, n=averaging, function=np.max)
a.fill_between(xx, vmi, vma, color=l.get_color(), alpha=0.2, zorder=-2, lw=0)
# autosacale
for a, lim in limits.items():
a.dataLim = lim
a.autoscale_view()
if len(what) > 1: a.legend(ls, labels, fontsize='small')
def plot_btf(axf, axp, data, *, frev=None, filled=False, smoothing=None, **kwargs):
"""Plot beam transfer function
:param axf: axis for magnitude response
:param axp: axis for phase response (or None)
:param data: instance of NWAData
:param frev: if not None, plot fraction of revolution frequency (tune) on x axis
:param filled: show trace as filled plot instead of line plot
:param smoothing: apply running average to data
:param kwargs: arguments passed to plot function
"""
f = data.f*(1/frev if frev else 1)
if filled:
c = axf.fill_between(f, np.zeros_like(data.m), *smooth(data.m, n=smoothing), **kwargs).get_facecolor()
else:
c = smooth_plot(axf, f, data.m, smoothing, **kwargs)[0].get_color()
if 'c' not in kwargs and 'color' not in kwargs: kwargs.update(color=c)
if axp is not None: smooth_plot(axp, f, data.p, smoothing, **kwargs)
if isinstance(data, NWADataAverage):
kwargs.update(lw=0, alpha=0.5, label=None)
axf.fill_between(f, *smooth(data.m - data.m_std, data.m + data.m_std, n=smoothing), **kwargs)
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
if axp is not None: axp.fill_between(f, *smooth(data.p - data.p_std, data.p + data.p_std, n=smoothing), **kwargs)
axf.set(ylabel=f'Magnitude response / {data.m_unit}', xlim=(np.min(f), np.max(f)))
if axp is not None: axp.set(ylabel=f'Phase response / {data.p_unit}')
(axf if axp is None else axp).set(xlabel='Stimulus tune' if frev else f'Stimulus frequency / {data.f_unit}')
def plot_btf_scan(axf, axp, dataset, *, frev=None, smoothing=None, cmap='gist_heat_r', colorbar=False, **kwargs):
"""Plot beam transfer function
:param axf: axis for magnitude response
:param axp: axis for phase response (or None)
:param dataset: dictionary {scan value: instance of NWAData}
:param frev: if not None, plot fraction of revolution frequency (tune) on x axis
:param smoothing: apply running average to data
:param colorbar: add colorbar to plot
:param kwargs: arguments passed to plot function
"""
keys = list(dataset.keys())
primary = dataset[keys[0]]
# check dataset for consistency
assert np.all([primary.f_unit == dataset[k].f_unit for k in keys]), 'Data does not have equal units of frequency!'
assert np.all([primary.m_unit == dataset[k].m_unit for k in keys]), 'Data does not have equal units of magnitude!'
assert np.all([primary.p_unit == dataset[k].p_unit for k in keys]), 'Data does not have equal units of phase!'
# collect magnitudes and phases into 2D array
if np.all([np.all(primary.f == dataset[k].f) for k in keys]):
f = primary.f*(1/frev if frev else 1)
else:
# different frequency rasters, works but might not be what we want
f = [dataset[k].f*(1/frev if frev else 1) for k in keys]
magnitudes = [smooth(dataset[k].m, n=smoothing)[0] for k in keys]
phases = [smooth(dataset[k].p, n=smoothing)[0] for k in keys]
# plot 2D array
cmf = axf.pcolormesh(f, keys, magnitudes, cmap=cmap, rasterized=True, **kwargs)
if smoothing: add_scale(axf, np.mean(np.diff(f))*smoothing)
if axp is not None:
cmp = axf.pcolormesh(f, keys, phases, cmap=cmap, rasterized=True, **kwargs)
if smoothing: add_scale(axp, np.mean(np.diff(f))*smoothing)
# plot layout
if colorbar:
axf.get_figure().colorbar(cmf, label=f'Magnitude response / {primary.m_unit}', ax=axf)
if axp is not None: axp.get_figure().colorbar(cmp, label=f'Phase response / {primary.p_unit}', ax=axp)
else:
axf.set(title=f'Magnitude response')
if axp is not None: axp.set(title=f'Phase response')
(axf if axp is None else axp).set(xlim=(np.min(f), np.max(f)), xlabel='Stimulus tune' if frev else f'Stimulus frequency / {primary.f_unit}')
if len(keys) < 12:
axf.set(yticks=keys)
if axp is not None: axp.set(yticks=keys)
def plot_tune_spectrum(ax, libera_data, xy, turn_range=None, time_range=None, tune_range=None, fit=False, fitargs=None, smoothing=None, return_spectrum=False, swap_xy=False, scaling='amplitude', **kwargs):
"""Plot a tune spectrum based on turn-by-turn data
:param ax: Axis to plot onto
:param libera_data: Instance of LiberaTBTData class
:param xy: either 'x' or 'y'
:param turn_range: tuple of (start_turn, stop_turn) for range to plot
:param time_range: tuple of (start_time, stop_time) in seconds for range to plot
:param tune_range: tuple of (start_tune, stop_tune) for range to plot
:param fit: if True or any of (fit_lorenzian, fit_gaussian, fit_*), determine the tune from a fit on the spectrum
:param fitargs: dict of keyword-arguments to pass to fit function
:param smoothing: if specified, apply a moving average smoothing filter of this width to the data
:param swap_xy: if True, swap plot axis
:param scaling: scaling of fft amplitude, one of 'a' (oscillation amplitude in mm), 'pds' (power density spectrum), 'e' (oscillation energy)
if fitargs is None: fitargs = {}
assert isinstance(libera_data, LiberaTBTData), f'Expected LiberaTBTData but got {type(libera_data)}'
turn_range = turn_or_time_range(libera_data.t, turn_range, time_range)
tbt_data = getattr(libera_data, xy)[turn_range]
fft = np.fft.rfft(tbt_data)
freq, mag, phase = np.fft.rfftfreq(len(tbt_data), d=1), np.abs(fft), np.angle(fft)
if scaling.lower()[0] == 'a':
# oscillation amplitude
label = 'Oscillation amplitude $\\hat{'+xy+'}$ / ' + getattr(libera_data, xy+'_unit')
mag *= 2/len(tbt_data)
elif scaling.lower() == 'pds':
# power density spectrum
label = '$|\\mathrm{FFT}|^2$ / a.u.'
mag = mag**2 # magnitude squared
elif scaling.lower()[0] == 'e':
# oscillation energy
mag *= 2/len(tbt_data) # amplitude in mm
mag = 2*np.pi**2 * freq**2 * mag**2 # Energy E/m/f0² in mm² with E=kx²/2=m*(2*pi*f)²*x² and here freq=f/f0
f0 = np.mean(1/np.diff(libera_data.t)) # revolution frequency f0 in Hz
mag *= f0**2 # E/m in mm²Hz²
mag *= SI(getattr(libera_data, xy+'_unit')+'^2 Hz^2').to('eV/u').magnitude # E/m in eV/u
label = 'Oscillation energy $E/m$ / eV/u'
if tune_range is not None:
mask = irng(freq, *tune_range)
freq, mag, phase = freq[mask], mag[mask], phase[mask]
else:
tune_range = (0, 0.5)
smooth_plot(ax, freq, mag, smoothing, swap_xy=swap_xy, **kwargs)
mag, phase = smooth(mag, phase, n=smoothing)
ax_set(ax, swap_xy=swap_xy, xlim=tune_range, xlabel=f'Tune $q_{xy}$',
if fit is True: fit = fit_lorenzian
fitr = fit(freq, mag, **fitargs)
if fit in (fit_lorenzian, fit_gaussian):
q, w = fitr[0][2], fitr[0][3]
if q<np.min(freq) or q>np.max(freq) or w > 0.1:
raise RuntimeError('Fit failed')
q = SI.Measurement(q, (fitr[1][2]**2+w**2+fitr[1][3]**2)**0.5, '') # conservative estimate of error including width of peak
ax.plot(*v(swap_xy, *fitr[-1]), '--', lw=1, label=f'Fit $q_{xy}={q:~L}$', zorder=50)
elif fit in (fit_multi_lorenzian, ):
qs, labels = [], []
for i in range(int(len(fitr[0])/3)):
q, w = fitr[0][3*i+2], fitr[0][3*i+3]
if q<np.min(freq) or q>np.max(freq) or w > 0.1:
raise RuntimeError('Fit failed')
q = SI.Measurement(q, (fitr[1][3*i+2]**2+w**2+fitr[1][3*i+3]**2)**0.5, '') # conservative estimate of error including width of peak
qs.append(q)
labels.append(f'Fit $q_{{{xy},{i+1}}}={q:~L}$')
ax.plot(*v(swap_xy, *fitr[-1]), '--', lw=1, label='\n'.join(labels), zorder=50)
except RuntimeError:
print('Warning: fit failed')
if return_spectrum:
return freq, mag, phase, q
return q
def plot_tune_spectrum_scan(ax, dataset, xy, turn_range=None, time_range=None, tune_range=None, smoothing=None, cmap='gist_heat_r', colorbar=False, **kwargs):
"""Plot a tune spectrum based on turn-by-turn data for a parameter scan
:param ax: Axis to plot onto
:param dataset: dictionary {scan value: instance of LiberaTBTData class}
:param xy: either 'x' or 'y'
:param turn_range: tuple of (start_turn, stop_turn) for range to plot
:param time_range: tuple of (start_time, stop_time) in seconds for range to plot
:param tune_range: tuple of (start_tune, stop_tune) for range to plot
:param smoothing: if specified, apply a moving average smoothing filter of this width to the data
:param cmap: colormap
:param colorbar: add colorbar to plot
"""
keys = list(dataset.keys())
primary = dataset[keys[0]]
assert np.all([isinstance(dataset[k], LiberaTBTData) for k in keys]), f'Expected LiberaTBTData but got {[type(dataset[k]) for k in keys]}'
# collect spectra into 2D array
f, magnitudes = [], []
for k in keys:
tbt_data = getattr(dataset[k], xy)[turn_or_time_range(dataset[k].t, turn_range, time_range)]
fft = np.fft.rfft(tbt_data)
freq, mag, phase = np.fft.rfftfreq(len(tbt_data), d=1), np.abs(fft), np.angle(fft)
if tune_range is not None:
mask = irng(freq, *tune_range)
freq, mag, phase = freq[mask], mag[mask], phase[mask]
else:
tune_range = (0, 0.5)
f.append(freq)
magnitudes.append(*smooth(mag, n=smoothing))
if np.all(np.roll(f, 1, axis=0) == f):
f = f[0]
# plot 2D array
cmf = ax.pcolormesh(f, keys, magnitudes, cmap=cmap, rasterized=True, **kwargs)
if smoothing: add_scale(ax, np.mean(np.diff(f))*smoothing)
# plot layout
if colorbar:
ax.get_figure().colorbar(cmf, label='$|\\mathrm{FFT}|^2$ / a.u.', ax=ax, )
ax.set(xlim=(np.min(f), np.max(f)), xlabel='Tune $q_{xy}$')
if len(keys) < 12:
ax.set(yticks=keys)
def plot_tune_spectrogram(ax, libera_data, xy, *, nperseg=2**12, noverlap=None, ninterpol=None, over_time=True, colorbar=False,
turn_range=None, time_range=None, tune_range=None, excitation=None, vmin=None, vmax=None, smoothing=None,
cmap='gist_heat_r', bunches=None, show_nperseg=True, fit=False, fitkwarg=dict()):
"""Plot a tune spectrogram based on turn-by-turn data
:param ax: Axis to plot onto
:param libera_data: Instance of LiberaTBTData or LiberaBBBData
When passing LiberaTBTData, the spectrogram for the single bunch is returned
When passing LiberaBBBData, the resulting spectrogram will be an interleave of the single bunch spectra
Hint: Use LiberaBBBData.to_tbt_data(h, b) to extract single bunch data
:param bunches: bunch number in case libera_data is an instance of LiberaBBBData
:param over_time: plot data as function of time (if true) or turn number (otherwise).
Note that plotting over time is not suited for interactive plots.
:param turn_range: tuple of (start_turn, stop_turn) for range to plot
:param time_range: tuple of (start_time, stop_time) in seconds for range to plot
:param tune_range: tuple of (start_tune, stop_tune) ror range to plot
:param excitation: tuple of (type, tune, ...) to indicate excitation range. Supported types are:
Excitation frequency band: ('band', tune, bandwidth_in_Hz)
Sinusoidal excitation: ('sine', tune)
Chirp excitation: ('chirp', tune, bandwidth_in_Hz, chirp_frequency_in_Hz, chirp_phase_in_rad)
:param vmin: minimum value for colorscale
:param vmax: maximum value for colorscale
:param smoothing: if specified, apply a moving average smoothing filter of this width to the data along the tune axis
:param colorbar: add colorbar to plot
if bunches is None:
# STFT on turn by turn data
assert isinstance(libera_data, LiberaTBTData), f'Either pass number of bunches or single bunch LiberaTBTData (but got {type(libera_data)}).'
if ninterpol is None: ninterpol = 4
else:
# interleaved STFT on bunch-by-bunch data
assert isinstance(libera_data, LiberaBBBData), f'Passing number of bunches requires LiberaBBBData (but got {type(libera_data)}).'
if ninterpol is None: ninterpol = 1
noverlap = (nperseg - nperseg//ninterpol) if noverlap is None else noverlap
# iterate bunches
turns, values, times, frevs = [], [], [], []
iterate_bunches = [0] if bunches is None else range(bunches)
for b in iterate_bunches:
# extract turn-by-turn data for single bunch
_libera_data = libera_data if bunches is None else libera_data.to_tbt_data(bunches, b=b)
_turn_range = turn_or_time_range(_libera_data.t, turn_range, time_range) # crop by turn or time
_b_range = slice(None, None) if bunches is None else slice(nperseg*b//bunches, None) # to shift fft window
_tbt_data = getattr(_libera_data, xy)[_turn_range][_b_range]
# compute STFT
tune, idx, _value = scipy.signal.stft(_tbt_data, fs=1, nperseg=nperseg, noverlap=noverlap, window='boxcar', padded=False, scaling='psd')
idx = idx.astype(int)
_turn = np.arange(len(_libera_data.t))[_turn_range][_b_range][0] + idx
_time = _libera_data.t[_turn_range][_b_range][idx]
_frev = scipy.ndimage.uniform_filter1d(1/np.diff(_libera_data.t)[_turn_range][_b_range], size=nperseg)[idx]
turns.append(_turn); values.append(_value); times.append(_time); frevs.append(_frev)
# interleave STFTs from single bunches
# (we can't just pass fs=bunches to STFT because their phase is not related)
if bunches is not None and bunches > 1 and noverlap > 0:
raise NotImplementedError('Multi-bunch spectra are currently not supported with non-zero overlap in STFT. Either pass TBTData or noverlap=0')
turn = np.empty((sum([t.shape[0] for t in turns]),), dtype=turns[0].dtype)
time = np.empty((sum([t.shape[0] for t in times]),), dtype=times[0].dtype)
frev = np.empty((sum([t.shape[0] for t in frevs]),), dtype=frevs[0].dtype)
value = np.empty((values[0].shape[0], sum([v.shape[1] for v in values])), dtype=values[0].dtype)
for b in iterate_bunches:
turn[b::bunches] = turns[b]
time[b::bunches] = times[b]
frev[b::bunches] = frevs[b]
value[:,b::bunches] = values[b]
# magnitude squared
mag = np.abs(value)**2
# what to plot on x-axis
# crop tune
if tune_range is not None:
mask = irng(tune, *tune_range)
tune, mag = tune[mask], mag[mask, :]
else:
tune_range = (0, 0.5)
# smooth data
if smoothing is not None:
add_scale(ax, smoothing*np.mean(np.diff(tune)), vertical=True)
tune = scipy.signal.savgol_filter(tune, smoothing, 0)
mag = scipy.signal.savgol_filter(mag, smoothing, 0, axis=0)
# finally plotting it
# pcolormesh can handle non-equidistant data, but is not well suited for interactive plots (slow!)
cm = ax.pcolormesh(xdata, tune, mag, shading='nearest', cmap=cmap, rasterized=True,
vmin=vmin or np.percentile(mag, 0.5), vmax=vmax or np.percentile(mag, 99.5),
#cmap='plasma_r',
#norm=mpl.colors.LogNorm(),
#norm=mpl.colors.LogNorm(vmin=np.nanmean(mag)/5, vmax=np.nanmean(mag)*1000),
#vmin=np.nanmean(mag), vmax=np.nanmean(mag)+np.nanstd(mag),
)
else:
# imshow is much faster, but can only handle equidistant data
cm = ax.imshow(mag, extent=(xdata[0], xdata[-1], tune[-1], tune[0]), aspect='auto', rasterized=True,
cmap=cmap, #cmap='plasma_r',
vmin=vmin or np.percentile(mag, 1), vmax=vmax or np.percentile(mag, 99),
if colorbar:
ax.get_figure().colorbar(cm, label='$|\\mathrm{FFT}|^2$ / a.u.', ax=ax)
# indicate excitation region
if excitation is not None:
ex_type, ex_q, *ex_args = excitation
ex_style = dict(lw=1, ls=(0, (4, 4)), color='k', alpha=0.5, zorder=50)
if ex_type == 'band':
ex_dq = ex_args[0]/frev
ax.plot(xdata, ex_q+ex_dq, xdata, ex_q-ex_dq, **ex_style)
#ax.fill_between(xdata, ex_q+ex_dq, 0.5*np.ones_like(xdata), hatch='//', alpha=0.5, edgecolor='k', facecolor='none')
#ax.fill_between(xdata, 0*np.ones_like(xdata), ex_q-ex_dq, hatch='//', alpha=0.5, edgecolor='k', facecolor='none')
elif ex_type == 'sine':
ax.plot(xdata, ex_q*np.ones_like(xdata), **ex_style)
elif ex_type == 'chirp':
ex_dq = ex_args[0]/frev
ex_fc, ex_pc = ex_args[1:3]
ax.plot(xdata, ex_q + ex_dq/2*np.sin(2*np.pi*ex_fc*time + ex_pc), **ex_style)
else:
raise NotImpementedError(f'Excitation type {ex_type} not implemented')
ax.set(ylim=tune_range, ylabel=f'Tune $q_{xy}$', xlabel='Time / s' if over_time else 'Turn') # or $1-q_{xy}$')
if fit:
dq_dx = None
try:
fitr = fit(tune, xdata, mag)
if fit in (fit_moving_gaussian, ):
v0, vp, q0, dq, sigma = fitr[0]
dx = xdata[-1]-xdata[0]
dq = SI.Measurement(fitr[0][3], fitr[1][3], '1/s' if over_time else '')
dq_dx = dq/dx
ax.plot(*fitr[-1], **dict(ls=(0, (5, 10)), label=f'Fit $\\partial q_{xy}/\\partial '+('t' if over_time else 'n')+f'={dq_dx:~L}$', zorder=50, color=cmap_petroff_10(9), **fitkwarg))
except RuntimeError:
print('Warning: fit failed')
return xdata, tune, mag, frev, dq_dx